
Uvodu u informatiku – Hardver savremenih
računara

Danijela Simić
hardver

1. oktobar 2025.

Sadržaj i

1. Uvod

2. Procesor (CPU)

3. Memorijska hijerarhija

4. Sistemska magistrala i komunikacija komponenti

5. Ulazno–izlazni podsistem

1

Uvod

Hardver savremenih računara

Šta radimo danas?

• Podsećanje: osnovne komponente savremenog računara

• Procesor (CPU): ALU, kontrolna jedinica, registri

• Ciklus instrukcije: fetch – decode – execute

• Cevovod (pipelining) i hazardi

• Paralelizam na nivou instrukcija (ILP) i više jezgara

• GPU i specijalizovani akceleratori (TPU, NPU, DNN)

Ne pričamo o „delovima računara“ samo spolja (kućište, ta-
statura), već o unutrašnjoj organizaciji koja određuje perfor-
manse savremenih sistema.

2

Hardver savremenih računara

Šta radimo danas?

• Podsećanje: osnovne komponente savremenog računara

• Procesor (CPU): ALU, kontrolna jedinica, registri

• Ciklus instrukcije: fetch – decode – execute

• Cevovod (pipelining) i hazardi

• Paralelizam na nivou instrukcija (ILP) i više jezgara

• GPU i specijalizovani akceleratori (TPU, NPU, DNN)

Ne pričamo o „delovima računara“ samo spolja (kućište, ta-
statura), već o unutrašnjoj organizaciji koja određuje perfor-
manse savremenih sistema.

2

Hardver savremenih računara

Šta radimo danas?

• Podsećanje: osnovne komponente savremenog računara

• Procesor (CPU): ALU, kontrolna jedinica, registri

• Ciklus instrukcije: fetch – decode – execute

• Cevovod (pipelining) i hazardi

• Paralelizam na nivou instrukcija (ILP) i više jezgara

• GPU i specijalizovani akceleratori (TPU, NPU, DNN)

Ne pričamo o „delovima računara“ samo spolja (kućište, ta-
statura), već o unutrašnjoj organizaciji koja određuje perfor-
manse savremenih sistema.

2

Hardver savremenih računara

Šta radimo danas?

• Podsećanje: osnovne komponente savremenog računara

• Procesor (CPU): ALU, kontrolna jedinica, registri

• Ciklus instrukcije: fetch – decode – execute

• Cevovod (pipelining) i hazardi

• Paralelizam na nivou instrukcija (ILP) i više jezgara

• GPU i specijalizovani akceleratori (TPU, NPU, DNN)

Ne pričamo o „delovima računara“ samo spolja (kućište, ta-
statura), već o unutrašnjoj organizaciji koja određuje perfor-
manse savremenih sistema.

2

Hardver savremenih računara

Šta radimo danas?

• Podsećanje: osnovne komponente savremenog računara

• Procesor (CPU): ALU, kontrolna jedinica, registri

• Ciklus instrukcije: fetch – decode – execute

• Cevovod (pipelining) i hazardi

• Paralelizam na nivou instrukcija (ILP) i više jezgara

• GPU i specijalizovani akceleratori (TPU, NPU, DNN)

Ne pričamo o „delovima računara“ samo spolja (kućište, ta-
statura), već o unutrašnjoj organizaciji koja određuje perfor-
manse savremenih sistema.

2

Hardver savremenih računara

Šta radimo danas?

• Podsećanje: osnovne komponente savremenog računara

• Procesor (CPU): ALU, kontrolna jedinica, registri

• Ciklus instrukcije: fetch – decode – execute

• Cevovod (pipelining) i hazardi

• Paralelizam na nivou instrukcija (ILP) i više jezgara

• GPU i specijalizovani akceleratori (TPU, NPU, DNN)

Ne pričamo o „delovima računara“ samo spolja (kućište, ta-
statura), već o unutrašnjoj organizaciji koja određuje perfor-
manse savremenih sistema.

2

Hardver savremenih računara

Šta radimo danas?

• Podsećanje: osnovne komponente savremenog računara

• Procesor (CPU): ALU, kontrolna jedinica, registri

• Ciklus instrukcije: fetch – decode – execute

• Cevovod (pipelining) i hazardi

• Paralelizam na nivou instrukcija (ILP) i više jezgara

• GPU i specijalizovani akceleratori (TPU, NPU, DNN)

Ne pričamo o „delovima računara“ samo spolja (kućište, ta-
statura), već o unutrašnjoj organizaciji koja određuje perfor-
manse savremenih sistema.

2

Hardver savremenih računara

Šta radimo danas?

• Podsećanje: osnovne komponente savremenog računara

• Procesor (CPU): ALU, kontrolna jedinica, registri

• Ciklus instrukcije: fetch – decode – execute

• Cevovod (pipelining) i hazardi

• Paralelizam na nivou instrukcija (ILP) i više jezgara

• GPU i specijalizovani akceleratori (TPU, NPU, DNN)

Ne pričamo o „delovima računara“ samo spolja (kućište, ta-
statura), već o unutrašnjoj organizaciji koja određuje perfor-
manse savremenih sistema.

2

Procesor (CPU)

Procesor (CPU)

Osnovne komponente procesora

Osnovne komponente računara

• Procesor (CPU) – izvršava
instrukcije nad podacima

• Glavna memorija (RAM) –
čuva programe i podatke

• Ulazno–izlazni uređaji –
tastatura, ekran, diskovi, mreža

• Magistrale i kontroleri –
povezuju sve komponente

• Matična ploča – fizička
integracija sistema

CPU

Kontrolna
jedinica

Aritmetičko
logička jedinica

registri

Memorija
Ulazni
uređaji

Izlazni
uređaji

magistrala

Sve komponente su
povezane i stalno
razmenjuju podatke.

3

Osnovne komponente računara

• Procesor (CPU) – izvršava
instrukcije nad podacima

• Glavna memorija (RAM) –
čuva programe i podatke

• Ulazno–izlazni uređaji –
tastatura, ekran, diskovi, mreža

• Magistrale i kontroleri –
povezuju sve komponente

• Matična ploča – fizička
integracija sistema

CPU

Kontrolna
jedinica

Aritmetičko
logička jedinica

registri

Memorija
Ulazni
uređaji

Izlazni
uređaji

magistrala

Sve komponente su
povezane i stalno
razmenjuju podatke.

3

Osnovne komponente računara

• Procesor (CPU) – izvršava
instrukcije nad podacima

• Glavna memorija (RAM) –
čuva programe i podatke

• Ulazno–izlazni uređaji –
tastatura, ekran, diskovi, mreža

• Magistrale i kontroleri –
povezuju sve komponente

• Matična ploča – fizička
integracija sistema

CPU

Kontrolna
jedinica

Aritmetičko
logička jedinica

registri

Memorija
Ulazni
uređaji

Izlazni
uređaji

magistrala

Sve komponente su
povezane i stalno
razmenjuju podatke.

3

Osnovne komponente računara

• Procesor (CPU) – izvršava
instrukcije nad podacima

• Glavna memorija (RAM) –
čuva programe i podatke

• Ulazno–izlazni uređaji –
tastatura, ekran, diskovi, mreža

• Magistrale i kontroleri –
povezuju sve komponente

• Matična ploča – fizička
integracija sistema

CPU

Kontrolna
jedinica

Aritmetičko
logička jedinica

registri

Memorija
Ulazni
uređaji

Izlazni
uređaji

magistrala

Sve komponente su
povezane i stalno
razmenjuju podatke.

3

Osnovne komponente računara

• Procesor (CPU) – izvršava
instrukcije nad podacima

• Glavna memorija (RAM) –
čuva programe i podatke

• Ulazno–izlazni uređaji –
tastatura, ekran, diskovi, mreža

• Magistrale i kontroleri –
povezuju sve komponente

• Matična ploča – fizička
integracija sistema

CPU

Kontrolna
jedinica

Aritmetičko
logička jedinica

registri

Memorija
Ulazni
uređaji

Izlazni
uređaji

magistrala

Sve komponente su
povezane i stalno
razmenjuju podatke.

3

CPU kao centralna procesorska jedinica

• CPU je implementiran kao
mikroprocesor na jednom
integrisanom kolu

• Sadrži:

• ALU – aritmetičko-logička
jedinica

• Kontrolnu jedinicu (CU)
• Registre – mali, brzi

memorijski elementi

• Savremeni procesori imaju više
jezgara i složenu internu
mikroarhitekturu

Registri

CU ALU

rezultat

kontrola

CPU = „mašina za
instrukcije“ nad regi-
strima i podacima u
memoriji.

4

CPU kao centralna procesorska jedinica

• CPU je implementiran kao
mikroprocesor na jednom
integrisanom kolu

• Sadrži:

• ALU – aritmetičko-logička
jedinica

• Kontrolnu jedinicu (CU)
• Registre – mali, brzi

memorijski elementi

• Savremeni procesori imaju više
jezgara i složenu internu
mikroarhitekturu

Registri

CU ALU

rezultat

kontrola

CPU = „mašina za
instrukcije“ nad regi-
strima i podacima u
memoriji.

4

CPU kao centralna procesorska jedinica

• CPU je implementiran kao
mikroprocesor na jednom
integrisanom kolu

• Sadrži:
• ALU – aritmetičko-logička

jedinica

• Kontrolnu jedinicu (CU)
• Registre – mali, brzi

memorijski elementi

• Savremeni procesori imaju više
jezgara i složenu internu
mikroarhitekturu

Registri

CU ALU

rezultat

kontrola

CPU = „mašina za
instrukcije“ nad regi-
strima i podacima u
memoriji.

4

CPU kao centralna procesorska jedinica

• CPU je implementiran kao
mikroprocesor na jednom
integrisanom kolu

• Sadrži:
• ALU – aritmetičko-logička

jedinica
• Kontrolnu jedinicu (CU)

• Registre – mali, brzi
memorijski elementi

• Savremeni procesori imaju više
jezgara i složenu internu
mikroarhitekturu

Registri

CU ALU

rezultat

kontrola

CPU = „mašina za
instrukcije“ nad regi-
strima i podacima u
memoriji.

4

CPU kao centralna procesorska jedinica

• CPU je implementiran kao
mikroprocesor na jednom
integrisanom kolu

• Sadrži:
• ALU – aritmetičko-logička

jedinica
• Kontrolnu jedinicu (CU)
• Registre – mali, brzi

memorijski elementi

• Savremeni procesori imaju više
jezgara i složenu internu
mikroarhitekturu

Registri

CU ALU

rezultat

kontrola

CPU = „mašina za
instrukcije“ nad regi-
strima i podacima u
memoriji.

4

CPU kao centralna procesorska jedinica

• CPU je implementiran kao
mikroprocesor na jednom
integrisanom kolu

• Sadrži:
• ALU – aritmetičko-logička

jedinica
• Kontrolnu jedinicu (CU)
• Registre – mali, brzi

memorijski elementi

• Savremeni procesori imaju više
jezgara i složenu internu
mikroarhitekturu

Registri

CU ALU

rezultat

kontrola

CPU = „mašina za
instrukcije“ nad regi-
strima i podacima u
memoriji.

4

ALU, kontrolna jedinica i registri

Tri osnovne celine CPU-a

• ALU (Arithmetic Logic Unit) sabiranje, oduzimanje,
množenje, deljenje, logičke operacije, poređenja

• Kontrolna jedinica (Control Unit) dekodira instrukcije,
generiše upravljačke signale, upravlja tokom podataka

• Registri mali broj vrlo brzih memorijskih ćelija fiksne širine

Što je više podataka moguće držati u registrima, to je manje
pristupa glavnoj memoriji i sistem je brži.

5

ALU, kontrolna jedinica i registri

Tri osnovne celine CPU-a

• ALU (Arithmetic Logic Unit) sabiranje, oduzimanje,
množenje, deljenje, logičke operacije, poređenja

• Kontrolna jedinica (Control Unit) dekodira instrukcije,
generiše upravljačke signale, upravlja tokom podataka

• Registri mali broj vrlo brzih memorijskih ćelija fiksne širine

Što je više podataka moguće držati u registrima, to je manje
pristupa glavnoj memoriji i sistem je brži.

5

ALU, kontrolna jedinica i registri

Tri osnovne celine CPU-a

• ALU (Arithmetic Logic Unit) sabiranje, oduzimanje,
množenje, deljenje, logičke operacije, poređenja

• Kontrolna jedinica (Control Unit) dekodira instrukcije,
generiše upravljačke signale, upravlja tokom podataka

• Registri mali broj vrlo brzih memorijskih ćelija fiksne širine

Što je više podataka moguće držati u registrima, to je manje
pristupa glavnoj memoriji i sistem je brži.

5

ALU, kontrolna jedinica i registri

Tri osnovne celine CPU-a

• ALU (Arithmetic Logic Unit) sabiranje, oduzimanje,
množenje, deljenje, logičke operacije, poređenja

• Kontrolna jedinica (Control Unit) dekodira instrukcije,
generiše upravljačke signale, upravlja tokom podataka

• Registri mali broj vrlo brzih memorijskih ćelija fiksne širine

Što je više podataka moguće držati u registrima, to je manje
pristupa glavnoj memoriji i sistem je brži.

5

ALU, kontrolna jedinica i registri

Tri osnovne celine CPU-a

• ALU (Arithmetic Logic Unit) sabiranje, oduzimanje,
množenje, deljenje, logičke operacije, poređenja

• Kontrolna jedinica (Control Unit) dekodira instrukcije,
generiše upravljačke signale, upravlja tokom podataka

• Registri mali broj vrlo brzih memorijskih ćelija fiksne širine

Što je više podataka moguće držati u registrima, to je manje
pristupa glavnoj memoriji i sistem je brži.

5

Procesor (CPU)

Cevovod i tehnike ubrzanja

Ciklus instrukcije

• Fetch – dohvatanje instrukcije iz memorije

• Decode – dekodiranje i priprema operanada

• Execute – izvršavanje operacije u ALU / pristup
memoriji

U svakoj fazi CPU koristi različite delove hardvera (magistralu,
registre, ALU...), tako da je prirodno da pokušamo da se faze
preklapaju kod više instrukcija (cevovod).

6

Ciklus instrukcije

• Fetch – dohvatanje instrukcije iz memorije

• Decode – dekodiranje i priprema operanada

• Execute – izvršavanje operacije u ALU / pristup
memoriji

U svakoj fazi CPU koristi različite delove hardvera (magistralu,
registre, ALU...), tako da je prirodno da pokušamo da se faze
preklapaju kod više instrukcija (cevovod).

6

Ciklus instrukcije

• Fetch – dohvatanje instrukcije iz memorije

• Decode – dekodiranje i priprema operanada

• Execute – izvršavanje operacije u ALU / pristup
memoriji

U svakoj fazi CPU koristi različite delove hardvera (magistralu,
registre, ALU...), tako da je prirodno da pokušamo da se faze
preklapaju kod više instrukcija (cevovod).

6

Ciklus instrukcije

• Fetch – dohvatanje instrukcije iz memorije

• Decode – dekodiranje i priprema operanada

• Execute – izvršavanje operacije u ALU / pristup
memoriji

U svakoj fazi CPU koristi različite delove hardvera (magistralu,
registre, ALU...), tako da je prirodno da pokušamo da se faze
preklapaju kod više instrukcija (cevovod).

6

Ciklus instrukcije

• Fetch – dohvatanje instrukcije iz memorije

• Decode – dekodiranje i priprema operanada

• Execute – izvršavanje operacije u ALU / pristup
memoriji

U svakoj fazi CPU koristi različite delove hardvera (magistralu,
registre, ALU...), tako da je prirodno da pokušamo da se faze
preklapaju kod više instrukcija (cevovod).

6

Primer: ciklus instrukcije

Pretpostavimo da su u registrima:

• R1 = 5

• R2 = 3

i da imamo instrukciju:

ADD R1, R2 ; R1 ← R1 + R2

• Fetch: CPU dohvata instrukciju ADD R1, R2 iz memorije

• Decode: CU prepoznaje operaciju sabiranja, čita R1 i R2
• Execute: ALU računa 5 + 3 = 8 i rezultat upisuje nazad u R1

Nakon izvršavanja: R1 = 8, R2 = 3.
7

Primer: ciklus instrukcije

Pretpostavimo da su u registrima:

• R1 = 5

• R2 = 3

i da imamo instrukciju:

ADD R1, R2 ; R1 ← R1 + R2

• Fetch: CPU dohvata instrukciju ADD R1, R2 iz memorije
• Decode: CU prepoznaje operaciju sabiranja, čita R1 i R2

• Execute: ALU računa 5 + 3 = 8 i rezultat upisuje nazad u R1

Nakon izvršavanja: R1 = 8, R2 = 3.
7

Primer: ciklus instrukcije

Pretpostavimo da su u registrima:

• R1 = 5

• R2 = 3

i da imamo instrukciju:

ADD R1, R2 ; R1 ← R1 + R2

• Fetch: CPU dohvata instrukciju ADD R1, R2 iz memorije
• Decode: CU prepoznaje operaciju sabiranja, čita R1 i R2
• Execute: ALU računa 5 + 3 = 8 i rezultat upisuje nazad u R1

Nakon izvršavanja: R1 = 8, R2 = 3.
7

Mini-zadatak: registri i instrukcije

Data je sledeća sekvenca:

1) LOAD R1, [A] ; A = 10
2) LOAD R2, [B] ; B = 20
3) ADD R3, R1, R2
4) STORE [C], R3

• Pretpostavimo da su u memoriji: A = 10, B = 20.
• Pitanje: koje vrednosti će biti u registrima R1, R2, R3 i na

adresi C nakon izvršavanja?
• Kako izgleda izvršavanje – nacrtati na tabli i napisati šta se

koristi (CPU, ALU ili registri)?

R1 = 10, R2 = 20, R3 = 30, C = 30.

8

Mini-zadatak: registri i instrukcije

Data je sledeća sekvenca:

1) LOAD R1, [A] ; A = 10
2) LOAD R2, [B] ; B = 20
3) ADD R3, R1, R2
4) STORE [C], R3

• Pretpostavimo da su u memoriji: A = 10, B = 20.

• Pitanje: koje vrednosti će biti u registrima R1, R2, R3 i na
adresi C nakon izvršavanja?

• Kako izgleda izvršavanje – nacrtati na tabli i napisati šta se
koristi (CPU, ALU ili registri)?

R1 = 10, R2 = 20, R3 = 30, C = 30.

8

Mini-zadatak: registri i instrukcije

Data je sledeća sekvenca:

1) LOAD R1, [A] ; A = 10
2) LOAD R2, [B] ; B = 20
3) ADD R3, R1, R2
4) STORE [C], R3

• Pretpostavimo da su u memoriji: A = 10, B = 20.
• Pitanje: koje vrednosti će biti u registrima R1, R2, R3 i na

adresi C nakon izvršavanja?

• Kako izgleda izvršavanje – nacrtati na tabli i napisati šta se
koristi (CPU, ALU ili registri)?

R1 = 10, R2 = 20, R3 = 30, C = 30.

8

Mini-zadatak: registri i instrukcije

Data je sledeća sekvenca:

1) LOAD R1, [A] ; A = 10
2) LOAD R2, [B] ; B = 20
3) ADD R3, R1, R2
4) STORE [C], R3

• Pretpostavimo da su u memoriji: A = 10, B = 20.
• Pitanje: koje vrednosti će biti u registrima R1, R2, R3 i na

adresi C nakon izvršavanja?
• Kako izgleda izvršavanje – nacrtati na tabli i napisati šta se

koristi (CPU, ALU ili registri)?

R1 = 10, R2 = 20, R3 = 30, C = 30.

8

Mini-zadatak: registri i instrukcije

Data je sledeća sekvenca:

1) LOAD R1, [A] ; A = 10
2) LOAD R2, [B] ; B = 20
3) ADD R3, R1, R2
4) STORE [C], R3

• Pretpostavimo da su u memoriji: A = 10, B = 20.
• Pitanje: koje vrednosti će biti u registrima R1, R2, R3 i na

adresi C nakon izvršavanja?
• Kako izgleda izvršavanje – nacrtati na tabli i napisati šta se

koristi (CPU, ALU ili registri)?

R1 = 10, R2 = 20, R3 = 30, C = 30.

8

Mini-zadatak: registri i instrukcije

Data je sledeća sekvenca:

1) LOAD R1, [A] ; A = 10
2) LOAD R2, [B] ; B = 20
3) ADD R3, R1, R2
4) STORE [C], R3

• Pretpostavimo da su u memoriji: A = 10, B = 20.
• Pitanje: koje vrednosti će biti u registrima R1, R2, R3 i na

adresi C nakon izvršavanja?
• Kako izgleda izvršavanje – nacrtati na tabli i napisati šta se

koristi (CPU, ALU ili registri)?

R1 = 10, R2 = 20, R3 = 30, C = 30.
8

Motivacija za cevovod (pipelining)

Problem sekvencijalnog izvršavanja

• Ako instrukcije izvršavamo „ jednu po jednu“, svaka mora da
prođe sve faze pre nego što sledeća počne.

• Za N instrukcija i k faza to znači oko k · N ciklusa.

• Tokom tog vremena, mnogi delovi procesora su neaktivni.

Preklapanje faza: dok jedna instrukcija dekodira, sledeća se
već dohvata, a prethodna se izvršava. Cilj: približiti se jednoj
instrukciji po ciklusu.

9

Motivacija za cevovod (pipelining)

Problem sekvencijalnog izvršavanja

• Ako instrukcije izvršavamo „ jednu po jednu“, svaka mora da
prođe sve faze pre nego što sledeća počne.

• Za N instrukcija i k faza to znači oko k · N ciklusa.

• Tokom tog vremena, mnogi delovi procesora su neaktivni.

Preklapanje faza: dok jedna instrukcija dekodira, sledeća se
već dohvata, a prethodna se izvršava. Cilj: približiti se jednoj
instrukciji po ciklusu.

9

Motivacija za cevovod (pipelining)

Problem sekvencijalnog izvršavanja

• Ako instrukcije izvršavamo „ jednu po jednu“, svaka mora da
prođe sve faze pre nego što sledeća počne.

• Za N instrukcija i k faza to znači oko k · N ciklusa.

• Tokom tog vremena, mnogi delovi procesora su neaktivni.

Preklapanje faza: dok jedna instrukcija dekodira, sledeća se
već dohvata, a prethodna se izvršava. Cilj: približiti se jednoj
instrukciji po ciklusu.

9

Motivacija za cevovod (pipelining)

Problem sekvencijalnog izvršavanja

• Ako instrukcije izvršavamo „ jednu po jednu“, svaka mora da
prođe sve faze pre nego što sledeća počne.

• Za N instrukcija i k faza to znači oko k · N ciklusa.

• Tokom tog vremena, mnogi delovi procesora su neaktivni.

Preklapanje faza: dok jedna instrukcija dekodira, sledeća se
već dohvata, a prethodna se izvršava. Cilj: približiti se jednoj
instrukciji po ciklusu.

9

Motivacija za cevovod (pipelining)

Problem sekvencijalnog izvršavanja

• Ako instrukcije izvršavamo „ jednu po jednu“, svaka mora da
prođe sve faze pre nego što sledeća počne.

• Za N instrukcija i k faza to znači oko k · N ciklusa.

• Tokom tog vremena, mnogi delovi procesora su neaktivni.

Preklapanje faza: dok jedna instrukcija dekodira, sledeća se
već dohvata, a prethodna se izvršava. Cilj: približiti se jednoj
instrukciji po ciklusu.

9

Jednostavan petostepeni cevovod

• IF – Instruction Fetch (čitanje instrukcije iz memorije)

• ID – Instruction Decode (dekodiranje, čitanje registara)

• EX – Execute (ALU operacije ili izračunavanje adrese)

• MEM – Memory (čitanje/pisanje podataka iz memorije)

• WB – Write Back (upis rezultata u registre)

1 2 3 4 5 6 7 8Ciklus

I1

I2

I3

I4

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

10

Jednostavan petostepeni cevovod

• IF – Instruction Fetch (čitanje instrukcije iz memorije)

• ID – Instruction Decode (dekodiranje, čitanje registara)

• EX – Execute (ALU operacije ili izračunavanje adrese)

• MEM – Memory (čitanje/pisanje podataka iz memorije)

• WB – Write Back (upis rezultata u registre)

1 2 3 4 5 6 7 8Ciklus

I1

I2

I3

I4

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

10

Jednostavan petostepeni cevovod

• IF – Instruction Fetch (čitanje instrukcije iz memorije)

• ID – Instruction Decode (dekodiranje, čitanje registara)

• EX – Execute (ALU operacije ili izračunavanje adrese)

• MEM – Memory (čitanje/pisanje podataka iz memorije)

• WB – Write Back (upis rezultata u registre)

1 2 3 4 5 6 7 8Ciklus

I1

I2

I3

I4

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

10

Jednostavan petostepeni cevovod

• IF – Instruction Fetch (čitanje instrukcije iz memorije)

• ID – Instruction Decode (dekodiranje, čitanje registara)

• EX – Execute (ALU operacije ili izračunavanje adrese)

• MEM – Memory (čitanje/pisanje podataka iz memorije)

• WB – Write Back (upis rezultata u registre)

1 2 3 4 5 6 7 8Ciklus

I1

I2

I3

I4

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

10

Jednostavan petostepeni cevovod

• IF – Instruction Fetch (čitanje instrukcije iz memorije)

• ID – Instruction Decode (dekodiranje, čitanje registara)

• EX – Execute (ALU operacije ili izračunavanje adrese)

• MEM – Memory (čitanje/pisanje podataka iz memorije)

• WB – Write Back (upis rezultata u registre)

1 2 3 4 5 6 7 8Ciklus

I1

I2

I3

I4

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

10

Jednostavan petostepeni cevovod

• IF – Instruction Fetch (čitanje instrukcije iz memorije)

• ID – Instruction Decode (dekodiranje, čitanje registara)

• EX – Execute (ALU operacije ili izračunavanje adrese)

• MEM – Memory (čitanje/pisanje podataka iz memorije)

• WB – Write Back (upis rezultata u registre)

1 2 3 4 5 6 7 8Ciklus

I1

I2

I3

I4

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

10

Jednostavan petostepeni cevovod

• IF – Instruction Fetch (čitanje instrukcije iz memorije)

• ID – Instruction Decode (dekodiranje, čitanje registara)

• EX – Execute (ALU operacije ili izračunavanje adrese)

• MEM – Memory (čitanje/pisanje podataka iz memorije)

• WB – Write Back (upis rezultata u registre)

1 2 3 4 5 6 7 8Ciklus

I1

I2

I3

I4

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

10

Mini-zadatak: tabela cevovoda

1 2 3 4 5 6 7 8Ciklus

I1

I2

I3

I4

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

Poenta je da se u svakom ciklusu izvršava više faza različitih
instrukcija istovremeno.

11

Hazardi u cevovodu

• Strukturni hazard – nedovoljno hardverskih resursa

• Podatkovni hazard – zavisnosti između instrukcija

• Kontrolni hazard – grananja i skokovi

Hazardi sprečavaju da sledeća instrukcija uđe u predviđenu fa-
zu u narednom ciklusu → javljaju se zadrške (stall) i smanjuje
se ubrzanje.

12

Hazardi u cevovodu

• Strukturni hazard – nedovoljno hardverskih resursa

• Podatkovni hazard – zavisnosti između instrukcija

• Kontrolni hazard – grananja i skokovi

Hazardi sprečavaju da sledeća instrukcija uđe u predviđenu fa-
zu u narednom ciklusu → javljaju se zadrške (stall) i smanjuje
se ubrzanje.

12

Hazardi u cevovodu

• Strukturni hazard – nedovoljno hardverskih resursa

• Podatkovni hazard – zavisnosti između instrukcija

• Kontrolni hazard – grananja i skokovi

Hazardi sprečavaju da sledeća instrukcija uđe u predviđenu fa-
zu u narednom ciklusu → javljaju se zadrške (stall) i smanjuje
se ubrzanje.

12

Hazardi u cevovodu

• Strukturni hazard – nedovoljno hardverskih resursa

• Podatkovni hazard – zavisnosti između instrukcija

• Kontrolni hazard – grananja i skokovi

Hazardi sprečavaju da sledeća instrukcija uđe u predviđenu fa-
zu u narednom ciklusu → javljaju se zadrške (stall) i smanjuje
se ubrzanje.

12

Hazardi u cevovodu

• Strukturni hazard – nedovoljno hardverskih resursa

• Podatkovni hazard – zavisnosti između instrukcija

• Kontrolni hazard – grananja i skokovi

Hazardi sprečavaju da sledeća instrukcija uđe u predviđenu fa-
zu u narednom ciklusu → javljaju se zadrške (stall) i smanjuje
se ubrzanje.

12

Hazard 1: podatkovni (RAW)

Klasifikujte hazard

I1: a = b + c;
I2: d = a + 1;

Ciklus 1 2 3 4 5 6 7 8

I1

I2

IF ID EX MEM WB

IF ID stall stall EX MEM WB

• I2 koristi rezultat instrukcije I1 → podatkovni (RAW) hazard.
• Bez prosleđivanja (forwarding), I2 mora da čeka da I1 završi

WB fazu.
• Crvene ćelije označavaju cikluse zastoja (stall) u ID fazi.

13

Hazard 1: podatkovni (RAW)

Klasifikujte hazard

I1: a = b + c;
I2: d = a + 1;

Ciklus 1 2 3 4 5 6 7 8

I1

I2

IF ID EX MEM WB

IF ID stall stall EX MEM WB

• I2 koristi rezultat instrukcije I1 → podatkovni (RAW) hazard.
• Bez prosleđivanja (forwarding), I2 mora da čeka da I1 završi

WB fazu.
• Crvene ćelije označavaju cikluse zastoja (stall) u ID fazi.

13

Hazard 1: podatkovni (RAW)

Klasifikujte hazard

I1: a = b + c;
I2: d = a + 1;

Ciklus 1 2 3 4 5 6 7 8

I1

I2

IF ID EX MEM WB

IF ID stall stall EX MEM WB

• I2 koristi rezultat instrukcije I1 → podatkovni (RAW) hazard.

• Bez prosleđivanja (forwarding), I2 mora da čeka da I1 završi
WB fazu.

• Crvene ćelije označavaju cikluse zastoja (stall) u ID fazi.

13

Hazard 1: podatkovni (RAW)

Klasifikujte hazard

I1: a = b + c;
I2: d = a + 1;

Ciklus 1 2 3 4 5 6 7 8

I1

I2

IF ID EX MEM WB

IF ID stall stall EX MEM WB

• I2 koristi rezultat instrukcije I1 → podatkovni (RAW) hazard.
• Bez prosleđivanja (forwarding), I2 mora da čeka da I1 završi

WB fazu.

• Crvene ćelije označavaju cikluse zastoja (stall) u ID fazi.

13

Hazard 1: podatkovni (RAW)

Klasifikujte hazard

I1: a = b + c;
I2: d = a + 1;

Ciklus 1 2 3 4 5 6 7 8

I1

I2

IF ID EX MEM WB

IF ID stall stall EX MEM WB

• I2 koristi rezultat instrukcije I1 → podatkovni (RAW) hazard.
• Bez prosleđivanja (forwarding), I2 mora da čeka da I1 završi

WB fazu.
• Crvene ćelije označavaju cikluse zastoja (stall) u ID fazi.

13

Hazard 2: kontrolni (grananje)

Klasifikujte hazard:

I1: if (x > 0)
y = f(x);

else
y = g(x);

I2: ... // sledeća instrukcija, zavisi od grananja

Ciklus 1 2 3 4 5 6 7

I1 (branch)

I2

IF ID EX MEM WB

stall stall IF ID EX MEM

• Ishod grananja (I1) saznaje se tek u EX fazi.
• Dok se grananje ne razreši, cevovod ne zna koju instrukciju

dalje da učita.

14

Hazard 2: kontrolni (grananje)

Klasifikujte hazard:

I1: if (x > 0)
y = f(x);

else
y = g(x);

I2: ... // sledeća instrukcija, zavisi od grananja

Ciklus 1 2 3 4 5 6 7

I1 (branch)

I2

IF ID EX MEM WB

stall stall IF ID EX MEM

• Ishod grananja (I1) saznaje se tek u EX fazi.
• Dok se grananje ne razreši, cevovod ne zna koju instrukciju

dalje da učita.

14

Hazard 2: kontrolni (grananje)

Klasifikujte hazard:

I1: if (x > 0)
y = f(x);

else
y = g(x);

I2: ... // sledeća instrukcija, zavisi od grananja

Ciklus 1 2 3 4 5 6 7

I1 (branch)

I2

IF ID EX MEM WB

stall stall IF ID EX MEM

• Ishod grananja (I1) saznaje se tek u EX fazi.

• Dok se grananje ne razreši, cevovod ne zna koju instrukciju
dalje da učita.

14

Hazard 2: kontrolni (grananje)

Klasifikujte hazard:

I1: if (x > 0)
y = f(x);

else
y = g(x);

I2: ... // sledeća instrukcija, zavisi od grananja

Ciklus 1 2 3 4 5 6 7

I1 (branch)

I2

IF ID EX MEM WB

stall stall IF ID EX MEM

• Ishod grananja (I1) saznaje se tek u EX fazi.
• Dok se grananje ne razreši, cevovod ne zna koju instrukciju

dalje da učita. 14

Hazard 3: strukturni (resursi)

Klasifikujte hazard

I1: LOAD R1, [A] // instrukcije i podaci u istoj
// memoriji

I2: STORE [B], R2

Ciklus 1 2 3 4 5 6 7 8 9

I1 (LOAD)

I2 (STORE)

IF ID EX MEM WB

IF ID stall EX MEM WB

• Jedna zajednička memorija služi i za instrukcije i za podatke.
• Kada I1 koristi MEM fazu (čitajući podatke), I2 ne može

istovremeno da radi STORE.
• Crveni „stall“ u IF I2 → strukturni hazard (nedovoljno

hardverskih resursa).

15

Hazard 3: strukturni (resursi)

Klasifikujte hazard

I1: LOAD R1, [A] // instrukcije i podaci u istoj
// memoriji

I2: STORE [B], R2

Ciklus 1 2 3 4 5 6 7 8 9

I1 (LOAD)

I2 (STORE)

IF ID EX MEM WB

IF ID stall EX MEM WB

• Jedna zajednička memorija služi i za instrukcije i za podatke.
• Kada I1 koristi MEM fazu (čitajući podatke), I2 ne može

istovremeno da radi STORE.
• Crveni „stall“ u IF I2 → strukturni hazard (nedovoljno

hardverskih resursa).

15

Hazard 3: strukturni (resursi)

Klasifikujte hazard

I1: LOAD R1, [A] // instrukcije i podaci u istoj
// memoriji

I2: STORE [B], R2

Ciklus 1 2 3 4 5 6 7 8 9

I1 (LOAD)

I2 (STORE)

IF ID EX MEM WB

IF ID stall EX MEM WB

• Jedna zajednička memorija služi i za instrukcije i za podatke.

• Kada I1 koristi MEM fazu (čitajući podatke), I2 ne može
istovremeno da radi STORE.

• Crveni „stall“ u IF I2 → strukturni hazard (nedovoljno
hardverskih resursa).

15

Hazard 3: strukturni (resursi)

Klasifikujte hazard

I1: LOAD R1, [A] // instrukcije i podaci u istoj
// memoriji

I2: STORE [B], R2

Ciklus 1 2 3 4 5 6 7 8 9

I1 (LOAD)

I2 (STORE)

IF ID EX MEM WB

IF ID stall EX MEM WB

• Jedna zajednička memorija služi i za instrukcije i za podatke.
• Kada I1 koristi MEM fazu (čitajući podatke), I2 ne može

istovremeno da radi STORE.

• Crveni „stall“ u IF I2 → strukturni hazard (nedovoljno
hardverskih resursa).

15

Hazard 3: strukturni (resursi)

Klasifikujte hazard

I1: LOAD R1, [A] // instrukcije i podaci u istoj
// memoriji

I2: STORE [B], R2

Ciklus 1 2 3 4 5 6 7 8 9

I1 (LOAD)

I2 (STORE)

IF ID EX MEM WB

IF ID stall EX MEM WB

• Jedna zajednička memorija služi i za instrukcije i za podatke.
• Kada I1 koristi MEM fazu (čitajući podatke), I2 ne može

istovremeno da radi STORE.
• Crveni „stall“ u IF I2 → strukturni hazard (nedovoljno

hardverskih resursa).
15

Paralelizam na nivou instrukcija (ILP)

ILP (Instruction-Level Parallelism) označava mogućnost da se
više nezavisnih instrukcija izvršava preklopljeno ili istovreme-
no, bez narušavanja ispravnosti programa.

• Zavisnosti (RAW, WAR, WAW) i kontrolne zavisnosti
ograničavaju ILP

• Kompajler i hardver pokušavaju da povećaju ILP:

• menjanje redosleda nezavisnih instrukcija
• „odmotavanje“ petlji (loop unrolling)
• dinamičko raspoređivanje i spekulativno izvršavanje

Što je više nezavisnih instrukcija u osnovnom bloku, to je veći
ILP koji arhitektura može da iskoristi.

16

Paralelizam na nivou instrukcija (ILP)

ILP (Instruction-Level Parallelism) označava mogućnost da se
više nezavisnih instrukcija izvršava preklopljeno ili istovreme-
no, bez narušavanja ispravnosti programa.

• Zavisnosti (RAW, WAR, WAW) i kontrolne zavisnosti
ograničavaju ILP

• Kompajler i hardver pokušavaju da povećaju ILP:

• menjanje redosleda nezavisnih instrukcija
• „odmotavanje“ petlji (loop unrolling)
• dinamičko raspoređivanje i spekulativno izvršavanje

Što je više nezavisnih instrukcija u osnovnom bloku, to je veći
ILP koji arhitektura može da iskoristi.

16

Paralelizam na nivou instrukcija (ILP)

ILP (Instruction-Level Parallelism) označava mogućnost da se
više nezavisnih instrukcija izvršava preklopljeno ili istovreme-
no, bez narušavanja ispravnosti programa.

• Zavisnosti (RAW, WAR, WAW) i kontrolne zavisnosti
ograničavaju ILP

• Kompajler i hardver pokušavaju da povećaju ILP:

• menjanje redosleda nezavisnih instrukcija
• „odmotavanje“ petlji (loop unrolling)
• dinamičko raspoređivanje i spekulativno izvršavanje

Što je više nezavisnih instrukcija u osnovnom bloku, to je veći
ILP koji arhitektura može da iskoristi.

16

Paralelizam na nivou instrukcija (ILP)

ILP (Instruction-Level Parallelism) označava mogućnost da se
više nezavisnih instrukcija izvršava preklopljeno ili istovreme-
no, bez narušavanja ispravnosti programa.

• Zavisnosti (RAW, WAR, WAW) i kontrolne zavisnosti
ograničavaju ILP

• Kompajler i hardver pokušavaju da povećaju ILP:
• menjanje redosleda nezavisnih instrukcija

• „odmotavanje“ petlji (loop unrolling)
• dinamičko raspoređivanje i spekulativno izvršavanje

Što je više nezavisnih instrukcija u osnovnom bloku, to je veći
ILP koji arhitektura može da iskoristi.

16

Paralelizam na nivou instrukcija (ILP)

ILP (Instruction-Level Parallelism) označava mogućnost da se
više nezavisnih instrukcija izvršava preklopljeno ili istovreme-
no, bez narušavanja ispravnosti programa.

• Zavisnosti (RAW, WAR, WAW) i kontrolne zavisnosti
ograničavaju ILP

• Kompajler i hardver pokušavaju da povećaju ILP:
• menjanje redosleda nezavisnih instrukcija
• „odmotavanje“ petlji (loop unrolling)

• dinamičko raspoređivanje i spekulativno izvršavanje

Što je više nezavisnih instrukcija u osnovnom bloku, to je veći
ILP koji arhitektura može da iskoristi.

16

Paralelizam na nivou instrukcija (ILP)

ILP (Instruction-Level Parallelism) označava mogućnost da se
više nezavisnih instrukcija izvršava preklopljeno ili istovreme-
no, bez narušavanja ispravnosti programa.

• Zavisnosti (RAW, WAR, WAW) i kontrolne zavisnosti
ograničavaju ILP

• Kompajler i hardver pokušavaju da povećaju ILP:
• menjanje redosleda nezavisnih instrukcija
• „odmotavanje“ petlji (loop unrolling)
• dinamičko raspoređivanje i spekulativno izvršavanje

Što je više nezavisnih instrukcija u osnovnom bloku, to je veći
ILP koji arhitektura može da iskoristi.

16

Paralelizam na nivou instrukcija (ILP)

ILP (Instruction-Level Parallelism) označava mogućnost da se
više nezavisnih instrukcija izvršava preklopljeno ili istovreme-
no, bez narušavanja ispravnosti programa.

• Zavisnosti (RAW, WAR, WAW) i kontrolne zavisnosti
ograničavaju ILP

• Kompajler i hardver pokušavaju da povećaju ILP:
• menjanje redosleda nezavisnih instrukcija
• „odmotavanje“ petlji (loop unrolling)
• dinamičko raspoređivanje i spekulativno izvršavanje

Što je više nezavisnih instrukcija u osnovnom bloku, to je veći
ILP koji arhitektura može da iskoristi.

16

Paralelizam na nivou instrukcija (ILP)

ILP (Instruction-Level Parallelism) označava mogućnost da se
više nezavisnih instrukcija izvršava preklopljeno ili istovreme-
no, bez narušavanja ispravnosti programa.

• Zavisnosti (RAW, WAR, WAW) i kontrolne zavisnosti
ograničavaju ILP

• Kompajler i hardver pokušavaju da povećaju ILP:
• menjanje redosleda nezavisnih instrukcija
• „odmotavanje“ petlji (loop unrolling)
• dinamičko raspoređivanje i spekulativno izvršavanje

Što je više nezavisnih instrukcija u osnovnom bloku, to je veći
ILP koji arhitektura može da iskoristi.

16

Predikcija skokova

• Grananja uvode kontrolne hazarde: ne znamo unapred
koja instrukcija je sledeća.

• Predikcija skokova pokušava da „pogodi“ ishod skoka
pre nego što se on zaista izračuna.

• Ako je pogodak – cevovod ostaje pun; ako je promašaj
– cevovod se prazni i gubimo cikluse.

Najjednostavniji model koristi 2-bitni zasićujući brojač po gra-
ni; savremeni procesori koriste hibridne i TAGE prediktore sa
globalnom istorijom i tagovima za visoku tačnost.

17

Predikcija skokova

• Grananja uvode kontrolne hazarde: ne znamo unapred
koja instrukcija je sledeća.

• Predikcija skokova pokušava da „pogodi“ ishod skoka
pre nego što se on zaista izračuna.

• Ako je pogodak – cevovod ostaje pun; ako je promašaj
– cevovod se prazni i gubimo cikluse.

Najjednostavniji model koristi 2-bitni zasićujući brojač po gra-
ni; savremeni procesori koriste hibridne i TAGE prediktore sa
globalnom istorijom i tagovima za visoku tačnost.

17

Predikcija skokova

• Grananja uvode kontrolne hazarde: ne znamo unapred
koja instrukcija je sledeća.

• Predikcija skokova pokušava da „pogodi“ ishod skoka
pre nego što se on zaista izračuna.

• Ako je pogodak – cevovod ostaje pun; ako je promašaj
– cevovod se prazni i gubimo cikluse.

Najjednostavniji model koristi 2-bitni zasićujući brojač po gra-
ni; savremeni procesori koriste hibridne i TAGE prediktore sa
globalnom istorijom i tagovima za visoku tačnost.

17

Predikcija skokova

• Grananja uvode kontrolne hazarde: ne znamo unapred
koja instrukcija je sledeća.

• Predikcija skokova pokušava da „pogodi“ ishod skoka
pre nego što se on zaista izračuna.

• Ako je pogodak – cevovod ostaje pun; ako je promašaj
– cevovod se prazni i gubimo cikluse.

Najjednostavniji model koristi 2-bitni zasićujući brojač po gra-
ni; savremeni procesori koriste hibridne i TAGE prediktore sa
globalnom istorijom i tagovima za visoku tačnost.

17

Predikcija skokova

• Grananja uvode kontrolne hazarde: ne znamo unapred
koja instrukcija je sledeća.

• Predikcija skokova pokušava da „pogodi“ ishod skoka
pre nego što se on zaista izračuna.

• Ako je pogodak – cevovod ostaje pun; ako je promašaj
– cevovod se prazni i gubimo cikluse.

Najjednostavniji model koristi 2-bitni zasićujući brojač po gra-
ni; savremeni procesori koriste hibridne i TAGE prediktore sa
globalnom istorijom i tagovima za visoku tačnost.

17

Procesor (CPU)

Procesori sa više jezgara i paralelizam

Više jezgara i TLP

• ILP: paralelizam unutar jedne
niti

• TLP (Thread-Level Parallelism):
više niti i procesa

• Multicore procesori: više
jezgara na istom čipu

• Jezgra dele memorijsku
hijerarhiju i magistrale

• Amdalov zakon ograničava
ukupno ubrzanje

Jezgro 1
L1/L2 privatni

Jezgro 2
L1/L2 privatni

Jezgro 3
L1/L2 privatni

Jezgro 4
L1/L2 privatni

Deljeni L3 keš

interni interconnect

Savremeni CPU kombinuje ILP (cevovod, višestruko izdava-
nje) i TLP (više jezgara i niti).

18

Više jezgara i TLP

• ILP: paralelizam unutar jedne
niti

• TLP (Thread-Level Parallelism):
više niti i procesa

• Multicore procesori: više
jezgara na istom čipu

• Jezgra dele memorijsku
hijerarhiju i magistrale

• Amdalov zakon ograničava
ukupno ubrzanje

Jezgro 1
L1/L2 privatni

Jezgro 2
L1/L2 privatni

Jezgro 3
L1/L2 privatni

Jezgro 4
L1/L2 privatni

Deljeni L3 keš

interni interconnect

Savremeni CPU kombinuje ILP (cevovod, višestruko izdava-
nje) i TLP (više jezgara i niti).

18

Više jezgara i TLP

• ILP: paralelizam unutar jedne
niti

• TLP (Thread-Level Parallelism):
više niti i procesa

• Multicore procesori: više
jezgara na istom čipu

• Jezgra dele memorijsku
hijerarhiju i magistrale

• Amdalov zakon ograničava
ukupno ubrzanje

Jezgro 1
L1/L2 privatni

Jezgro 2
L1/L2 privatni

Jezgro 3
L1/L2 privatni

Jezgro 4
L1/L2 privatni

Deljeni L3 keš

interni interconnect

Savremeni CPU kombinuje ILP (cevovod, višestruko izdava-
nje) i TLP (više jezgara i niti).

18

Više jezgara i TLP

• ILP: paralelizam unutar jedne
niti

• TLP (Thread-Level Parallelism):
više niti i procesa

• Multicore procesori: više
jezgara na istom čipu

• Jezgra dele memorijsku
hijerarhiju i magistrale

• Amdalov zakon ograničava
ukupno ubrzanje

Jezgro 1
L1/L2 privatni

Jezgro 2
L1/L2 privatni

Jezgro 3
L1/L2 privatni

Jezgro 4
L1/L2 privatni

Deljeni L3 keš

interni interconnect

Savremeni CPU kombinuje ILP (cevovod, višestruko izdava-
nje) i TLP (više jezgara i niti).

18

Više jezgara i TLP

• ILP: paralelizam unutar jedne
niti

• TLP (Thread-Level Parallelism):
više niti i procesa

• Multicore procesori: više
jezgara na istom čipu

• Jezgra dele memorijsku
hijerarhiju i magistrale

• Amdalov zakon ograničava
ukupno ubrzanje

Jezgro 1
L1/L2 privatni

Jezgro 2
L1/L2 privatni

Jezgro 3
L1/L2 privatni

Jezgro 4
L1/L2 privatni

Deljeni L3 keš

interni interconnect

Savremeni CPU kombinuje ILP (cevovod, višestruko izdava-
nje) i TLP (više jezgara i niti).

18

GPU i specijalizovani akceleratori

• GPU – stotine ili hiljade
jednostavnih jezgara

• Model SIMD/SIMT: ista
instrukcija nad velikim
brojem podataka

• Idealno za grafiku, naučne
računare, mašinsko učenje

• Programski modeli: CUDA,
OpenCL

• DNN akceleratori
(TPU, NPU, Tensor
Cores)

• Optimisani za matrične
operacije i konvolucije

• Domain-specific
architecture: visoke
performanse po vatu

Heterogeni sistemi kombinuju CPU + GPU + specijalizovane
akceleratore kako bi postigli bolje performanse i energetsku
efikasnost.

19

GPU i specijalizovani akceleratori

• GPU – stotine ili hiljade
jednostavnih jezgara

• Model SIMD/SIMT: ista
instrukcija nad velikim
brojem podataka

• Idealno za grafiku, naučne
računare, mašinsko učenje

• Programski modeli: CUDA,
OpenCL

• DNN akceleratori
(TPU, NPU, Tensor
Cores)

• Optimisani za matrične
operacije i konvolucije

• Domain-specific
architecture: visoke
performanse po vatu

Heterogeni sistemi kombinuju CPU + GPU + specijalizovane
akceleratore kako bi postigli bolje performanse i energetsku
efikasnost.

19

GPU i specijalizovani akceleratori

• GPU – stotine ili hiljade
jednostavnih jezgara

• Model SIMD/SIMT: ista
instrukcija nad velikim
brojem podataka

• Idealno za grafiku, naučne
računare, mašinsko učenje

• Programski modeli: CUDA,
OpenCL

• DNN akceleratori
(TPU, NPU, Tensor
Cores)

• Optimisani za matrične
operacije i konvolucije

• Domain-specific
architecture: visoke
performanse po vatu

Heterogeni sistemi kombinuju CPU + GPU + specijalizovane
akceleratore kako bi postigli bolje performanse i energetsku
efikasnost.

19

GPU i specijalizovani akceleratori

• GPU – stotine ili hiljade
jednostavnih jezgara

• Model SIMD/SIMT: ista
instrukcija nad velikim
brojem podataka

• Idealno za grafiku, naučne
računare, mašinsko učenje

• Programski modeli: CUDA,
OpenCL

• DNN akceleratori
(TPU, NPU, Tensor
Cores)

• Optimisani za matrične
operacije i konvolucije

• Domain-specific
architecture: visoke
performanse po vatu

Heterogeni sistemi kombinuju CPU + GPU + specijalizovane
akceleratore kako bi postigli bolje performanse i energetsku
efikasnost.

19

GPU i specijalizovani akceleratori

• GPU – stotine ili hiljade
jednostavnih jezgara

• Model SIMD/SIMT: ista
instrukcija nad velikim
brojem podataka

• Idealno za grafiku, naučne
računare, mašinsko učenje

• Programski modeli: CUDA,
OpenCL

• DNN akceleratori
(TPU, NPU, Tensor
Cores)

• Optimisani za matrične
operacije i konvolucije

• Domain-specific
architecture: visoke
performanse po vatu

Heterogeni sistemi kombinuju CPU + GPU + specijalizovane
akceleratore kako bi postigli bolje performanse i energetsku
efikasnost.

19

GPU i specijalizovani akceleratori

• GPU – stotine ili hiljade
jednostavnih jezgara

• Model SIMD/SIMT: ista
instrukcija nad velikim
brojem podataka

• Idealno za grafiku, naučne
računare, mašinsko učenje

• Programski modeli: CUDA,
OpenCL

• DNN akceleratori
(TPU, NPU, Tensor
Cores)

• Optimisani za matrične
operacije i konvolucije

• Domain-specific
architecture: visoke
performanse po vatu

Heterogeni sistemi kombinuju CPU + GPU + specijalizovane
akceleratore kako bi postigli bolje performanse i energetsku
efikasnost.

19

GPU i specijalizovani akceleratori

• GPU – stotine ili hiljade
jednostavnih jezgara

• Model SIMD/SIMT: ista
instrukcija nad velikim
brojem podataka

• Idealno za grafiku, naučne
računare, mašinsko učenje

• Programski modeli: CUDA,
OpenCL

• DNN akceleratori
(TPU, NPU, Tensor
Cores)

• Optimisani za matrične
operacije i konvolucije

• Domain-specific
architecture: visoke
performanse po vatu

Heterogeni sistemi kombinuju CPU + GPU + specijalizovane
akceleratore kako bi postigli bolje performanse i energetsku
efikasnost.

19

GPU i specijalizovani akceleratori

• GPU – stotine ili hiljade
jednostavnih jezgara

• Model SIMD/SIMT: ista
instrukcija nad velikim
brojem podataka

• Idealno za grafiku, naučne
računare, mašinsko učenje

• Programski modeli: CUDA,
OpenCL

• DNN akceleratori
(TPU, NPU, Tensor
Cores)

• Optimisani za matrične
operacije i konvolucije

• Domain-specific
architecture: visoke
performanse po vatu

Heterogeni sistemi kombinuju CPU + GPU + specijalizovane
akceleratore kako bi postigli bolje performanse i energetsku
efikasnost.

19

GPU i specijalizovani akceleratori

• GPU – stotine ili hiljade
jednostavnih jezgara

• Model SIMD/SIMT: ista
instrukcija nad velikim
brojem podataka

• Idealno za grafiku, naučne
računare, mašinsko učenje

• Programski modeli: CUDA,
OpenCL

• DNN akceleratori
(TPU, NPU, Tensor
Cores)

• Optimisani za matrične
operacije i konvolucije

• Domain-specific
architecture: visoke
performanse po vatu

Heterogeni sistemi kombinuju CPU + GPU + specijalizovane
akceleratore kako bi postigli bolje performanse i energetsku
efikasnost.

19

GPU i specijalizovani akceleratori

CPU

ALU+CU ALU+CU

ALU+CU ALU+CU

malo snažnih jezgara
(kompleksna jezgra)

GPU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

mnogo jednostavnih jezgara
(SIMD/SIMT, masivni DLP)

pikseli slike (ulaz)

GPU jezgra rade istu instrukciju
nad različitim pikselima

svako jezgro izvršava istu instrukciju, npr.

brightness = brightness + 20;

20

Memorijska hijerarhija

Cilj časa

Šta radimo danas?

• Memorijska hijerarhija: od registara do SSD-a

• Registri, keš memorije (L1–L3)

• Glavna memorija (DRAM) i „zid memorije”

• SSD i nevolatilne memorije (NVM)

• Virtuelna memorija – iluzija velikog, kontinualnog prostora

Razumeti zašto postoji hijerarhija memorije i kako različiti ni-
voi balansiraju brzinu, kapacitet, cenu i energiju.

21

Cilj časa

Šta radimo danas?

• Memorijska hijerarhija: od registara do SSD-a

• Registri, keš memorije (L1–L3)

• Glavna memorija (DRAM) i „zid memorije”

• SSD i nevolatilne memorije (NVM)

• Virtuelna memorija – iluzija velikog, kontinualnog prostora

Razumeti zašto postoji hijerarhija memorije i kako različiti ni-
voi balansiraju brzinu, kapacitet, cenu i energiju.

21

Cilj časa

Šta radimo danas?

• Memorijska hijerarhija: od registara do SSD-a

• Registri, keš memorije (L1–L3)

• Glavna memorija (DRAM) i „zid memorije”

• SSD i nevolatilne memorije (NVM)

• Virtuelna memorija – iluzija velikog, kontinualnog prostora

Razumeti zašto postoji hijerarhija memorije i kako različiti ni-
voi balansiraju brzinu, kapacitet, cenu i energiju.

21

Cilj časa

Šta radimo danas?

• Memorijska hijerarhija: od registara do SSD-a

• Registri, keš memorije (L1–L3)

• Glavna memorija (DRAM) i „zid memorije”

• SSD i nevolatilne memorije (NVM)

• Virtuelna memorija – iluzija velikog, kontinualnog prostora

Razumeti zašto postoji hijerarhija memorije i kako različiti ni-
voi balansiraju brzinu, kapacitet, cenu i energiju.

21

Cilj časa

Šta radimo danas?

• Memorijska hijerarhija: od registara do SSD-a

• Registri, keš memorije (L1–L3)

• Glavna memorija (DRAM) i „zid memorije”

• SSD i nevolatilne memorije (NVM)

• Virtuelna memorija – iluzija velikog, kontinualnog prostora

Razumeti zašto postoji hijerarhija memorije i kako različiti ni-
voi balansiraju brzinu, kapacitet, cenu i energiju.

21

Cilj časa

Šta radimo danas?

• Memorijska hijerarhija: od registara do SSD-a

• Registri, keš memorije (L1–L3)

• Glavna memorija (DRAM) i „zid memorije”

• SSD i nevolatilne memorije (NVM)

• Virtuelna memorija – iluzija velikog, kontinualnog prostora

Razumeti zašto postoji hijerarhija memorije i kako različiti ni-
voi balansiraju brzinu, kapacitet, cenu i energiju.

21

Cilj časa

Šta radimo danas?

• Memorijska hijerarhija: od registara do SSD-a

• Registri, keš memorije (L1–L3)

• Glavna memorija (DRAM) i „zid memorije”

• SSD i nevolatilne memorije (NVM)

• Virtuelna memorija – iluzija velikog, kontinualnog prostora

Razumeti zašto postoji hijerarhija memorije i kako različiti ni-
voi balansiraju brzinu, kapacitet, cenu i energiju.

21

Memorijska hijerarhija

CPU
registri

Keš memorija

RAM

ROM/BIOS

USB diskovi

hard diskovi

CD, DVD, Blu-ray, magnetne trake

niža
cena/većikapacitet

veća
veličina/m

anja
brzina

viša
cena/m

anjikapacitet
m

anja
veličina/veća

brzina

pod
napajanjem

bez
napajanja

22

Memorijska hijerarhija – šta mislite?

Popunite tabelu: kako se menjaju brzina, kapacitet i cena
po bitu kada se spuštamo niz hijerarhiju memorije?

Nivo Brzina Kapacitet Cene (2025.)

Registri ? ? ?
L1 ? ? ?
L2 ? ? ?
RAM ? ? ?
SSD ? ? ?

Ideja: gore u hijerarhiji je brzo i malo, dole je sporo i ogromno.
Gde su najskuplji bitovi? 23

Memorijska hijerarhija – konkretne vrednosti (2025)

Nivo Brzina Tipičan kapacitet Cena (2025)

Registri 0.2–0.5 ns 1–10 KB ∼ $500–$1000 po MB (SRAM)
L1 keš 1–4 ns 32–64 KB ∼ $150–$300 po MB (SRAM)
L2 keš 4–12 ns 256 KB–2 MB ∼ $20–$50 po MB (SRAM)
RAM (DDR4/5) 60–100 ns 8–64 GB $3–$5 po GB
SSD (NVMe) 50–150 µs 0.5–4 TB $0.05–$0.10 po GB

Latencija raste za **1000×** od RAM-a ka SSD-u, a cena po bitu
opada za preko **10000×** od registara ka SSD-u.

24

„Zid memorije“

• Brzina procesora je rasla mnogo brže od brzine glavne
memorije.

• CPU bi većinu vremena proveo čekajući podatke iz
DRAM-a.

• Ovo ograničenje se naziva „zid memorije“ (memory
wall).

• Uvesti više nivoa bržih, manjih memorija: registre,
keševe.

• Iskoristiti lokalnost pristupa (vremensku i prostornu).

• U proseku sistem se ponaša skoro kao najbrža memorija
u lancu.

25

„Zid memorije“

• Brzina procesora je rasla mnogo brže od brzine glavne
memorije.

• CPU bi većinu vremena proveo čekajući podatke iz
DRAM-a.

• Ovo ograničenje se naziva „zid memorije“ (memory
wall).

• Uvesti više nivoa bržih, manjih memorija: registre,
keševe.

• Iskoristiti lokalnost pristupa (vremensku i prostornu).

• U proseku sistem se ponaša skoro kao najbrža memorija
u lancu.

25

„Zid memorije“

• Brzina procesora je rasla mnogo brže od brzine glavne
memorije.

• CPU bi većinu vremena proveo čekajući podatke iz
DRAM-a.

• Ovo ograničenje se naziva „zid memorije“ (memory
wall).

• Uvesti više nivoa bržih, manjih memorija: registre,
keševe.

• Iskoristiti lokalnost pristupa (vremensku i prostornu).

• U proseku sistem se ponaša skoro kao najbrža memorija
u lancu.

25

„Zid memorije“

• Brzina procesora je rasla mnogo brže od brzine glavne
memorije.

• CPU bi većinu vremena proveo čekajući podatke iz
DRAM-a.

• Ovo ograničenje se naziva „zid memorije“ (memory
wall).

• Uvesti više nivoa bržih, manjih memorija: registre,
keševe.

• Iskoristiti lokalnost pristupa (vremensku i prostornu).

• U proseku sistem se ponaša skoro kao najbrža memorija
u lancu.

25

„Zid memorije“

• Brzina procesora je rasla mnogo brže od brzine glavne
memorije.

• CPU bi većinu vremena proveo čekajući podatke iz
DRAM-a.

• Ovo ograničenje se naziva „zid memorije“ (memory
wall).

• Uvesti više nivoa bržih, manjih memorija: registre,
keševe.

• Iskoristiti lokalnost pristupa (vremensku i prostornu).

• U proseku sistem se ponaša skoro kao najbrža memorija
u lancu.

25

„Zid memorije“

• Brzina procesora je rasla mnogo brže od brzine glavne
memorije.

• CPU bi većinu vremena proveo čekajući podatke iz
DRAM-a.

• Ovo ograničenje se naziva „zid memorije“ (memory
wall).

• Uvesti više nivoa bržih, manjih memorija: registre,
keševe.

• Iskoristiti lokalnost pristupa (vremensku i prostornu).

• U proseku sistem se ponaša skoro kao najbrža memorija
u lancu.

25

„Zid memorije“

• Brzina procesora je rasla mnogo brže od brzine glavne
memorije.

• CPU bi većinu vremena proveo čekajući podatke iz
DRAM-a.

• Ovo ograničenje se naziva „zid memorije“ (memory
wall).

• Uvesti više nivoa bržih, manjih memorija: registre,
keševe.

• Iskoristiti lokalnost pristupa (vremensku i prostornu).

• U proseku sistem se ponaša skoro kao najbrža memorija
u lancu.

25

Memorijska hijerarhija

Registri i keš memorije (L1–L3)

Registri i latencija

Registri procesora

• Mala, vrlo brza memorija unutar jezgra CPU-a

• Fiksna širina (npr. 32 bita, 64 bita)

• Latencija: 1 takt

• Implementirani u SRAM tehnologiji (šest tranzistora, bez
kondenzatora, nema potrebe za osvežavanjem)

Sve aritmetičke i logičke operacije odvijaju se nad podacima
u registrima → zato je važno što više relevantnih podataka
zadržati na ovom nivou.

26

Registri i latencija

Registri procesora

• Mala, vrlo brza memorija unutar jezgra CPU-a

• Fiksna širina (npr. 32 bita, 64 bita)

• Latencija: 1 takt

• Implementirani u SRAM tehnologiji (šest tranzistora, bez
kondenzatora, nema potrebe za osvežavanjem)

Sve aritmetičke i logičke operacije odvijaju se nad podacima
u registrima → zato je važno što više relevantnih podataka
zadržati na ovom nivou.

26

Registri i latencija

Registri procesora

• Mala, vrlo brza memorija unutar jezgra CPU-a

• Fiksna širina (npr. 32 bita, 64 bita)

• Latencija: 1 takt

• Implementirani u SRAM tehnologiji (šest tranzistora, bez
kondenzatora, nema potrebe za osvežavanjem)

Sve aritmetičke i logičke operacije odvijaju se nad podacima
u registrima → zato je važno što više relevantnih podataka
zadržati na ovom nivou.

26

Registri i latencija

Registri procesora

• Mala, vrlo brza memorija unutar jezgra CPU-a

• Fiksna širina (npr. 32 bita, 64 bita)

• Latencija: 1 takt

• Implementirani u SRAM tehnologiji (šest tranzistora, bez
kondenzatora, nema potrebe za osvežavanjem)

Sve aritmetičke i logičke operacije odvijaju se nad podacima
u registrima → zato je važno što više relevantnih podataka
zadržati na ovom nivou.

26

Registri i latencija

Registri procesora

• Mala, vrlo brza memorija unutar jezgra CPU-a

• Fiksna širina (npr. 32 bita, 64 bita)

• Latencija: 1 takt

• Implementirani u SRAM tehnologiji (šest tranzistora, bez
kondenzatora, nema potrebe za osvežavanjem)

Sve aritmetičke i logičke operacije odvijaju se nad podacima
u registrima → zato je važno što više relevantnih podataka
zadržati na ovom nivou.

26

Registri i latencija

Registri procesora

• Mala, vrlo brza memorija unutar jezgra CPU-a

• Fiksna širina (npr. 32 bita, 64 bita)

• Latencija: 1 takt

• Implementirani u SRAM tehnologiji (šest tranzistora, bez
kondenzatora, nema potrebe za osvežavanjem)

Sve aritmetičke i logičke operacije odvijaju se nad podacima
u registrima → zato je važno što više relevantnih podataka
zadržati na ovom nivou.

26

Keš memorije: L1, L2, L3

• Keš = mali, brzi međusloj
između registara i DRAM-a

• Hijerarhija: L1 (najbrži,
najmanji), L2, L3

• Čuvaju kopije često korišćenih
podataka i instrukcija

• Tipične latencije (približno):

• L1: 2–4 ciklusa
• L2: 10–20 ciklusa
• L3: 30–50 ciklusa

CPU jezgro

L1 I$ L1 D$

L2 keš

L3 keš (deljeni)

→ DRAM

Keš pokušava da sa-
krije veliku razliku u
brzini između CPU i
DRAM-a.

27

Keš memorije: L1, L2, L3

• Keš = mali, brzi međusloj
između registara i DRAM-a

• Hijerarhija: L1 (najbrži,
najmanji), L2, L3

• Čuvaju kopije često korišćenih
podataka i instrukcija

• Tipične latencije (približno):

• L1: 2–4 ciklusa
• L2: 10–20 ciklusa
• L3: 30–50 ciklusa

CPU jezgro

L1 I$ L1 D$

L2 keš

L3 keš (deljeni)

→ DRAM

Keš pokušava da sa-
krije veliku razliku u
brzini između CPU i
DRAM-a.

27

Keš memorije: L1, L2, L3

• Keš = mali, brzi međusloj
između registara i DRAM-a

• Hijerarhija: L1 (najbrži,
najmanji), L2, L3

• Čuvaju kopije često korišćenih
podataka i instrukcija

• Tipične latencije (približno):

• L1: 2–4 ciklusa
• L2: 10–20 ciklusa
• L3: 30–50 ciklusa

CPU jezgro

L1 I$ L1 D$

L2 keš

L3 keš (deljeni)

→ DRAM

Keš pokušava da sa-
krije veliku razliku u
brzini između CPU i
DRAM-a.

27

Keš memorije: L1, L2, L3

• Keš = mali, brzi međusloj
između registara i DRAM-a

• Hijerarhija: L1 (najbrži,
najmanji), L2, L3

• Čuvaju kopije često korišćenih
podataka i instrukcija

• Tipične latencije (približno):

• L1: 2–4 ciklusa
• L2: 10–20 ciklusa
• L3: 30–50 ciklusa

CPU jezgro

L1 I$ L1 D$

L2 keš

L3 keš (deljeni)

→ DRAM

Keš pokušava da sa-
krije veliku razliku u
brzini između CPU i
DRAM-a.

27

Keš memorije: L1, L2, L3

• Keš = mali, brzi međusloj
između registara i DRAM-a

• Hijerarhija: L1 (najbrži,
najmanji), L2, L3

• Čuvaju kopije često korišćenih
podataka i instrukcija

• Tipične latencije (približno):
• L1: 2–4 ciklusa

• L2: 10–20 ciklusa
• L3: 30–50 ciklusa

CPU jezgro

L1 I$ L1 D$

L2 keš

L3 keš (deljeni)

→ DRAM

Keš pokušava da sa-
krije veliku razliku u
brzini između CPU i
DRAM-a.

27

Keš memorije: L1, L2, L3

• Keš = mali, brzi međusloj
između registara i DRAM-a

• Hijerarhija: L1 (najbrži,
najmanji), L2, L3

• Čuvaju kopije često korišćenih
podataka i instrukcija

• Tipične latencije (približno):
• L1: 2–4 ciklusa
• L2: 10–20 ciklusa

• L3: 30–50 ciklusa

CPU jezgro

L1 I$ L1 D$

L2 keš

L3 keš (deljeni)

→ DRAM

Keš pokušava da sa-
krije veliku razliku u
brzini između CPU i
DRAM-a.

27

Keš memorije: L1, L2, L3

• Keš = mali, brzi međusloj
između registara i DRAM-a

• Hijerarhija: L1 (najbrži,
najmanji), L2, L3

• Čuvaju kopije često korišćenih
podataka i instrukcija

• Tipične latencije (približno):
• L1: 2–4 ciklusa
• L2: 10–20 ciklusa
• L3: 30–50 ciklusa

CPU jezgro

L1 I$ L1 D$

L2 keš

L3 keš (deljeni)

→ DRAM

Keš pokušava da sa-
krije veliku razliku u
brzini između CPU i
DRAM-a.

27

Organizacija keša

Osnovni pojmovi

• Cache hit – traženi podatak se nalazi u kešu

• Cache miss – podatak nije u kešu, mora se dovući iz nižeg
nivoa

• Na promašaj, keš bira blok koji će zameniti (LRU,
pseudo-LRU, dr.)

• Keš je organizovan u blokove (linije), tipično 32–128 B

• Kada CPU traži podatak, dovlači se ceo blok

• Vremenska lokalnost: isti podatak se uskoro ponovo
koristi

• Prostorna lokalnost: koriste se susedne adrese

28

Organizacija keša

Osnovni pojmovi

• Cache hit – traženi podatak se nalazi u kešu

• Cache miss – podatak nije u kešu, mora se dovući iz nižeg
nivoa

• Na promašaj, keš bira blok koji će zameniti (LRU,
pseudo-LRU, dr.)

• Keš je organizovan u blokove (linije), tipično 32–128 B

• Kada CPU traži podatak, dovlači se ceo blok

• Vremenska lokalnost: isti podatak se uskoro ponovo
koristi

• Prostorna lokalnost: koriste se susedne adrese

28

Organizacija keša

Osnovni pojmovi

• Cache hit – traženi podatak se nalazi u kešu

• Cache miss – podatak nije u kešu, mora se dovući iz nižeg
nivoa

• Na promašaj, keš bira blok koji će zameniti (LRU,
pseudo-LRU, dr.)

• Keš je organizovan u blokove (linije), tipično 32–128 B

• Kada CPU traži podatak, dovlači se ceo blok

• Vremenska lokalnost: isti podatak se uskoro ponovo
koristi

• Prostorna lokalnost: koriste se susedne adrese

28

Organizacija keša

Osnovni pojmovi

• Cache hit – traženi podatak se nalazi u kešu

• Cache miss – podatak nije u kešu, mora se dovući iz nižeg
nivoa

• Na promašaj, keš bira blok koji će zameniti (LRU,
pseudo-LRU, dr.)

• Keš je organizovan u blokove (linije), tipično 32–128 B

• Kada CPU traži podatak, dovlači se ceo blok

• Vremenska lokalnost: isti podatak se uskoro ponovo
koristi

• Prostorna lokalnost: koriste se susedne adrese

28

Organizacija keša

Osnovni pojmovi

• Cache hit – traženi podatak se nalazi u kešu

• Cache miss – podatak nije u kešu, mora se dovući iz nižeg
nivoa

• Na promašaj, keš bira blok koji će zameniti (LRU,
pseudo-LRU, dr.)

• Keš je organizovan u blokove (linije), tipično 32–128 B

• Kada CPU traži podatak, dovlači se ceo blok

• Vremenska lokalnost: isti podatak se uskoro ponovo
koristi

• Prostorna lokalnost: koriste se susedne adrese

28

Organizacija keša

Osnovni pojmovi

• Cache hit – traženi podatak se nalazi u kešu

• Cache miss – podatak nije u kešu, mora se dovući iz nižeg
nivoa

• Na promašaj, keš bira blok koji će zameniti (LRU,
pseudo-LRU, dr.)

• Keš je organizovan u blokove (linije), tipično 32–128 B

• Kada CPU traži podatak, dovlači se ceo blok

• Vremenska lokalnost: isti podatak se uskoro ponovo
koristi

• Prostorna lokalnost: koriste se susedne adrese

28

Organizacija keša

Osnovni pojmovi

• Cache hit – traženi podatak se nalazi u kešu

• Cache miss – podatak nije u kešu, mora se dovući iz nižeg
nivoa

• Na promašaj, keš bira blok koji će zameniti (LRU,
pseudo-LRU, dr.)

• Keš je organizovan u blokove (linije), tipično 32–128 B

• Kada CPU traži podatak, dovlači se ceo blok

• Vremenska lokalnost: isti podatak se uskoro ponovo
koristi

• Prostorna lokalnost: koriste se susedne adrese

28

Organizacija keša

Osnovni pojmovi

• Cache hit – traženi podatak se nalazi u kešu

• Cache miss – podatak nije u kešu, mora se dovući iz nižeg
nivoa

• Na promašaj, keš bira blok koji će zameniti (LRU,
pseudo-LRU, dr.)

• Keš je organizovan u blokove (linije), tipično 32–128 B

• Kada CPU traži podatak, dovlači se ceo blok

• Vremenska lokalnost: isti podatak se uskoro ponovo
koristi

• Prostorna lokalnost: koriste se susedne adrese

28

Strategije upisa u keš

• Write-through (pisanje-prolazom)

• Svaka izmena u kešu odmah ide i u niži nivo (DRAM)
• Jednostavnije održavanje konzistentnosti

• Write-back (pisanje-na-izbacivanje)

• Izmene ostaju u kešu, blok se označava kao „prljav“
• Pri izbacivanju bloka, sadržaj se upisuje u niži nivo

Write-back smanjuje saobraćaj ka memoriji, ali zahteva slože-
niju kontrolu i može biti kritičan pri kvarovima (podaci nisu
još u DRAM-u).

29

Strategije upisa u keš

• Write-through (pisanje-prolazom)
• Svaka izmena u kešu odmah ide i u niži nivo (DRAM)

• Jednostavnije održavanje konzistentnosti

• Write-back (pisanje-na-izbacivanje)

• Izmene ostaju u kešu, blok se označava kao „prljav“
• Pri izbacivanju bloka, sadržaj se upisuje u niži nivo

Write-back smanjuje saobraćaj ka memoriji, ali zahteva slože-
niju kontrolu i može biti kritičan pri kvarovima (podaci nisu
još u DRAM-u).

29

Strategije upisa u keš

• Write-through (pisanje-prolazom)
• Svaka izmena u kešu odmah ide i u niži nivo (DRAM)
• Jednostavnije održavanje konzistentnosti

• Write-back (pisanje-na-izbacivanje)

• Izmene ostaju u kešu, blok se označava kao „prljav“
• Pri izbacivanju bloka, sadržaj se upisuje u niži nivo

Write-back smanjuje saobraćaj ka memoriji, ali zahteva slože-
niju kontrolu i može biti kritičan pri kvarovima (podaci nisu
još u DRAM-u).

29

Strategije upisa u keš

• Write-through (pisanje-prolazom)
• Svaka izmena u kešu odmah ide i u niži nivo (DRAM)
• Jednostavnije održavanje konzistentnosti

• Write-back (pisanje-na-izbacivanje)

• Izmene ostaju u kešu, blok se označava kao „prljav“
• Pri izbacivanju bloka, sadržaj se upisuje u niži nivo

Write-back smanjuje saobraćaj ka memoriji, ali zahteva slože-
niju kontrolu i može biti kritičan pri kvarovima (podaci nisu
još u DRAM-u).

29

Strategije upisa u keš

• Write-through (pisanje-prolazom)
• Svaka izmena u kešu odmah ide i u niži nivo (DRAM)
• Jednostavnije održavanje konzistentnosti

• Write-back (pisanje-na-izbacivanje)
• Izmene ostaju u kešu, blok se označava kao „prljav“

• Pri izbacivanju bloka, sadržaj se upisuje u niži nivo

Write-back smanjuje saobraćaj ka memoriji, ali zahteva slože-
niju kontrolu i može biti kritičan pri kvarovima (podaci nisu
još u DRAM-u).

29

Strategije upisa u keš

• Write-through (pisanje-prolazom)
• Svaka izmena u kešu odmah ide i u niži nivo (DRAM)
• Jednostavnije održavanje konzistentnosti

• Write-back (pisanje-na-izbacivanje)
• Izmene ostaju u kešu, blok se označava kao „prljav“
• Pri izbacivanju bloka, sadržaj se upisuje u niži nivo

Write-back smanjuje saobraćaj ka memoriji, ali zahteva slože-
niju kontrolu i može biti kritičan pri kvarovima (podaci nisu
još u DRAM-u).

29

Strategije upisa u keš

• Write-through (pisanje-prolazom)
• Svaka izmena u kešu odmah ide i u niži nivo (DRAM)
• Jednostavnije održavanje konzistentnosti

• Write-back (pisanje-na-izbacivanje)
• Izmene ostaju u kešu, blok se označava kao „prljav“
• Pri izbacivanju bloka, sadržaj se upisuje u niži nivo

Write-back smanjuje saobraćaj ka memoriji, ali zahteva slože-
niju kontrolu i može biti kritičan pri kvarovima (podaci nisu
još u DRAM-u).

29

Strategije upisa u keš

• Write-through (pisanje-prolazom)
• Svaka izmena u kešu odmah ide i u niži nivo (DRAM)
• Jednostavnije održavanje konzistentnosti

• Write-back (pisanje-na-izbacivanje)
• Izmene ostaju u kešu, blok se označava kao „prljav“
• Pri izbacivanju bloka, sadržaj se upisuje u niži nivo

Write-back smanjuje saobraćaj ka memoriji, ali zahteva slože-
niju kontrolu i može biti kritičan pri kvarovima (podaci nisu
još u DRAM-u).

29

Memorijska hijerarhija

Glavna memorija, SSD i NVM

DRAM – glavna memorija

• DRAM – dinamička memorija
sa slobodnim pristupom

• Svaka ćelija: tranzistor +
kondenzator

• Napon se „gubi“ vremenom →
potrebna periodična obnova
(refresh)

• Volatilna – gubi sadržaj pri
nestanku napajanja

• Velika gustina, povoljna cena po
bitu

1

re
do

vi

kolone

DRAM ćelije organizovane u mrežu
(svaki kvadratić = 1 bit)

Tipično vreme pristupa: 50–100 ns (desetine puta sporije od
keša, stotine puta od registara). 30

DRAM – glavna memorija

• DRAM – dinamička memorija
sa slobodnim pristupom

• Svaka ćelija: tranzistor +
kondenzator

• Napon se „gubi“ vremenom →
potrebna periodična obnova
(refresh)

• Volatilna – gubi sadržaj pri
nestanku napajanja

• Velika gustina, povoljna cena po
bitu

1

re
do

vi

kolone

DRAM ćelije organizovane u mrežu
(svaki kvadratić = 1 bit)

Tipično vreme pristupa: 50–100 ns (desetine puta sporije od
keša, stotine puta od registara). 30

DRAM – glavna memorija

• DRAM – dinamička memorija
sa slobodnim pristupom

• Svaka ćelija: tranzistor +
kondenzator

• Napon se „gubi“ vremenom →
potrebna periodična obnova
(refresh)

• Volatilna – gubi sadržaj pri
nestanku napajanja

• Velika gustina, povoljna cena po
bitu

1

re
do

vi

kolone

DRAM ćelije organizovane u mrežu
(svaki kvadratić = 1 bit)

Tipično vreme pristupa: 50–100 ns (desetine puta sporije od
keša, stotine puta od registara). 30

DRAM – glavna memorija

• DRAM – dinamička memorija
sa slobodnim pristupom

• Svaka ćelija: tranzistor +
kondenzator

• Napon se „gubi“ vremenom →
potrebna periodična obnova
(refresh)

• Volatilna – gubi sadržaj pri
nestanku napajanja

• Velika gustina, povoljna cena po
bitu

1

re
do

vi

kolone

DRAM ćelije organizovane u mrežu
(svaki kvadratić = 1 bit)

Tipično vreme pristupa: 50–100 ns (desetine puta sporije od
keša, stotine puta od registara). 30

DRAM – glavna memorija

• DRAM – dinamička memorija
sa slobodnim pristupom

• Svaka ćelija: tranzistor +
kondenzator

• Napon se „gubi“ vremenom →
potrebna periodična obnova
(refresh)

• Volatilna – gubi sadržaj pri
nestanku napajanja

• Velika gustina, povoljna cena po
bitu

1

re
do

vi

kolone

DRAM ćelije organizovane u mrežu
(svaki kvadratić = 1 bit)

Tipično vreme pristupa: 50–100 ns (desetine puta sporije od
keša, stotine puta od registara). 30

Uloga DRAM-a u hijerarhiji

Glavna memorija je središnji radni prostor računara:

• Čuva sve programe i podatke koji su trenutno aktivni

• CPU ne pristupa direktno SSD-u/disku, već se sve pre
prvo učitava u DRAM

• Što je manje promašaja keša ka DRAM-u, to je niže
prosečno vreme pristupa (AMAT) i manja potrošnja
energije

31

Uloga DRAM-a u hijerarhiji

Glavna memorija je središnji radni prostor računara:

• Čuva sve programe i podatke koji su trenutno aktivni

• CPU ne pristupa direktno SSD-u/disku, već se sve pre
prvo učitava u DRAM

• Što je manje promašaja keša ka DRAM-u, to je niže
prosečno vreme pristupa (AMAT) i manja potrošnja
energije

31

Uloga DRAM-a u hijerarhiji

Glavna memorija je središnji radni prostor računara:

• Čuva sve programe i podatke koji su trenutno aktivni

• CPU ne pristupa direktno SSD-u/disku, već se sve pre
prvo učitava u DRAM

• Što je manje promašaja keša ka DRAM-u, to je niže
prosečno vreme pristupa (AMAT) i manja potrošnja
energije

31

Uloga DRAM-a u hijerarhiji

Glavna memorija je središnji radni prostor računara:

• Čuva sve programe i podatke koji su trenutno aktivni

• CPU ne pristupa direktno SSD-u/disku, već se sve pre
prvo učitava u DRAM

• Što je manje promašaja keša ka DRAM-u, to je niže
prosečno vreme pristupa (AMAT) i manja potrošnja
energije

31

Uloga DRAM-a u hijerarhiji

Glavna memorija je središnji radni prostor računara:

• Čuva sve programe i podatke koji su trenutno aktivni

• CPU ne pristupa direktno SSD-u/disku, već se sve pre
prvo učitava u DRAM

• Što je manje promašaja keša ka DRAM-u, to je niže
prosečno vreme pristupa (AMAT) i manja potrošnja
energije

31

SSD – nevolatilno skladište

• SSD koristi NAND
tranzistora

• Nevolatilan – zadržava
podatke bez napajanja

• Operiše nad stranicama i
blokovima, ne nad bajtovima

• Pre upisa blok se mora
obrisati → erase-before-write

• Latencija u mikrosekundama
(sporije od DRAM-a, brže od
HDD)

NAND blok

stranica 0
stranica 1
stranica 2
stranica 3
stranica 4
stranica 5

blok se briše ceo pre ponovnog pisanja

SSD kontroler
(mapiranje, wear-leveling)

32

SSD – nevolatilno skladište

• SSD koristi NAND
tranzistora

• Nevolatilan – zadržava
podatke bez napajanja

• Operiše nad stranicama i
blokovima, ne nad bajtovima

• Pre upisa blok se mora
obrisati → erase-before-write

• Latencija u mikrosekundama
(sporije od DRAM-a, brže od
HDD)

NAND blok

stranica 0
stranica 1
stranica 2
stranica 3
stranica 4
stranica 5

blok se briše ceo pre ponovnog pisanja

SSD kontroler
(mapiranje, wear-leveling)

32

SSD – nevolatilno skladište

• SSD koristi NAND
tranzistora

• Nevolatilan – zadržava
podatke bez napajanja

• Operiše nad stranicama i
blokovima, ne nad bajtovima

• Pre upisa blok se mora
obrisati → erase-before-write

• Latencija u mikrosekundama
(sporije od DRAM-a, brže od
HDD)

NAND blok

stranica 0
stranica 1
stranica 2
stranica 3
stranica 4
stranica 5

blok se briše ceo pre ponovnog pisanja

SSD kontroler
(mapiranje, wear-leveling)

32

SSD – nevolatilno skladište

• SSD koristi NAND
tranzistora

• Nevolatilan – zadržava
podatke bez napajanja

• Operiše nad stranicama i
blokovima, ne nad bajtovima

• Pre upisa blok se mora
obrisati → erase-before-write

• Latencija u mikrosekundama
(sporije od DRAM-a, brže od
HDD)

NAND blok

stranica 0
stranica 1
stranica 2
stranica 3
stranica 4
stranica 5

blok se briše ceo pre ponovnog pisanja

SSD kontroler
(mapiranje, wear-leveling)

32

SSD – nevolatilno skladište

• SSD koristi NAND
tranzistora

• Nevolatilan – zadržava
podatke bez napajanja

• Operiše nad stranicama i
blokovima, ne nad bajtovima

• Pre upisa blok se mora
obrisati → erase-before-write

• Latencija u mikrosekundama
(sporije od DRAM-a, brže od
HDD)

NAND blok

stranica 0
stranica 1
stranica 2
stranica 3
stranica 4
stranica 5

blok se briše ceo pre ponovnog pisanja

SSD kontroler
(mapiranje, wear-leveling)

32

SSD – nevolatilno skladište

NAND blok

stranica 0
stranica 1
stranica 2
stranica 3
stranica 4
stranica 5

blok se briše ceo pre ponovnog pisanja

SSD kontroler
(mapiranje, wear-leveling)

• Mapiranje logičkih na fizičke adrese

• Keširanje

• Upravljanje ciklusima pisanja da se produži vek trajanja

33

NVM – nevolatilne memorije srednjeg sloja

• Popunjavaju jaz između DRAM-a i SSD-a

• Kombinuju: relativno brz pristup i trajnost

• Primeri: Intel Optane (3D XPoint), PCM, MRAM

• Često podržavaju adresiranje po bajtu (za razliku od
NAND)

• Koriste fizičke ili magnetne promene u materijalu koje
ostaju i bez napajanja.

• Kao brzi disk (blokovski uređaj)

• Kao proširenje radne memorije

• Kao trajna radna memorija – podaci preživljavaju
restart

34

NVM – nevolatilne memorije srednjeg sloja

• Popunjavaju jaz između DRAM-a i SSD-a

• Kombinuju: relativno brz pristup i trajnost

• Primeri: Intel Optane (3D XPoint), PCM, MRAM

• Često podržavaju adresiranje po bajtu (za razliku od
NAND)

• Koriste fizičke ili magnetne promene u materijalu koje
ostaju i bez napajanja.

• Kao brzi disk (blokovski uređaj)

• Kao proširenje radne memorije

• Kao trajna radna memorija – podaci preživljavaju
restart

34

NVM – nevolatilne memorije srednjeg sloja

• Popunjavaju jaz između DRAM-a i SSD-a

• Kombinuju: relativno brz pristup i trajnost

• Primeri: Intel Optane (3D XPoint), PCM, MRAM

• Često podržavaju adresiranje po bajtu (za razliku od
NAND)

• Koriste fizičke ili magnetne promene u materijalu koje
ostaju i bez napajanja.

• Kao brzi disk (blokovski uređaj)

• Kao proširenje radne memorije

• Kao trajna radna memorija – podaci preživljavaju
restart

34

NVM – nevolatilne memorije srednjeg sloja

• Popunjavaju jaz između DRAM-a i SSD-a

• Kombinuju: relativno brz pristup i trajnost

• Primeri: Intel Optane (3D XPoint), PCM, MRAM

• Često podržavaju adresiranje po bajtu (za razliku od
NAND)

• Koriste fizičke ili magnetne promene u materijalu koje
ostaju i bez napajanja.

• Kao brzi disk (blokovski uređaj)

• Kao proširenje radne memorije

• Kao trajna radna memorija – podaci preživljavaju
restart

34

NVM – nevolatilne memorije srednjeg sloja

• Popunjavaju jaz između DRAM-a i SSD-a

• Kombinuju: relativno brz pristup i trajnost

• Primeri: Intel Optane (3D XPoint), PCM, MRAM

• Često podržavaju adresiranje po bajtu (za razliku od
NAND)

• Koriste fizičke ili magnetne promene u materijalu koje
ostaju i bez napajanja.

• Kao brzi disk (blokovski uređaj)

• Kao proširenje radne memorije

• Kao trajna radna memorija – podaci preživljavaju
restart

34

NVM – nevolatilne memorije srednjeg sloja

• Popunjavaju jaz između DRAM-a i SSD-a

• Kombinuju: relativno brz pristup i trajnost

• Primeri: Intel Optane (3D XPoint), PCM, MRAM

• Često podržavaju adresiranje po bajtu (za razliku od
NAND)

• Koriste fizičke ili magnetne promene u materijalu koje
ostaju i bez napajanja.

• Kao brzi disk (blokovski uređaj)

• Kao proširenje radne memorije

• Kao trajna radna memorija – podaci preživljavaju
restart

34

NVM – nevolatilne memorije srednjeg sloja

• Popunjavaju jaz između DRAM-a i SSD-a

• Kombinuju: relativno brz pristup i trajnost

• Primeri: Intel Optane (3D XPoint), PCM, MRAM

• Često podržavaju adresiranje po bajtu (za razliku od
NAND)

• Koriste fizičke ili magnetne promene u materijalu koje
ostaju i bez napajanja.

• Kao brzi disk (blokovski uređaj)

• Kao proširenje radne memorije

• Kao trajna radna memorija – podaci preživljavaju
restart

34

Sistemska magistrala i
komunikacija komponenti

Zašto veze između komponenti bitne?

• Do sada: fokus na CPU i memorijsku hijerarhiju.

• Ali performanse sistema zavise i od toga kako su komponente
povezane.

• CPU, RAM, SSD, GPU, mreža – stalno razmenjuju podatke.

• Ako je veza spora ili zagušena → sistem čeka, bez obzira na
brz CPU.

Arhitektura magistrala i mreža međupovezivanja je podjedna-
ko važna kao i brzina samog procesora.

35

Zašto veze između komponenti bitne?

• Do sada: fokus na CPU i memorijsku hijerarhiju.

• Ali performanse sistema zavise i od toga kako su komponente
povezane.

• CPU, RAM, SSD, GPU, mreža – stalno razmenjuju podatke.

• Ako je veza spora ili zagušena → sistem čeka, bez obzira na
brz CPU.

Arhitektura magistrala i mreža međupovezivanja je podjedna-
ko važna kao i brzina samog procesora.

35

Zašto veze između komponenti bitne?

• Do sada: fokus na CPU i memorijsku hijerarhiju.

• Ali performanse sistema zavise i od toga kako su komponente
povezane.

• CPU, RAM, SSD, GPU, mreža – stalno razmenjuju podatke.

• Ako je veza spora ili zagušena → sistem čeka, bez obzira na
brz CPU.

Arhitektura magistrala i mreža međupovezivanja je podjedna-
ko važna kao i brzina samog procesora.

35

Zašto veze između komponenti bitne?

• Do sada: fokus na CPU i memorijsku hijerarhiju.

• Ali performanse sistema zavise i od toga kako su komponente
povezane.

• CPU, RAM, SSD, GPU, mreža – stalno razmenjuju podatke.

• Ako je veza spora ili zagušena → sistem čeka, bez obzira na
brz CPU.

Arhitektura magistrala i mreža međupovezivanja je podjedna-
ko važna kao i brzina samog procesora.

35

Zašto veze između komponenti bitne?

• Do sada: fokus na CPU i memorijsku hijerarhiju.

• Ali performanse sistema zavise i od toga kako su komponente
povezane.

• CPU, RAM, SSD, GPU, mreža – stalno razmenjuju podatke.

• Ako je veza spora ili zagušena → sistem čeka, bez obzira na
brz CPU.

Arhitektura magistrala i mreža međupovezivanja je podjedna-
ko važna kao i brzina samog procesora.

35

Zašto veze između komponenti bitne?

• Do sada: fokus na CPU i memorijsku hijerarhiju.

• Ali performanse sistema zavise i od toga kako su komponente
povezane.

• CPU, RAM, SSD, GPU, mreža – stalno razmenjuju podatke.

• Ako je veza spora ili zagušena → sistem čeka, bez obzira na
brz CPU.

Arhitektura magistrala i mreža međupovezivanja je podjedna-
ko važna kao i brzina samog procesora.

35

Klasična sistemska magistrala

magistrala: podaci, adrese, upravljački signali

CPU RAM Disk Mrežna
kartica

arbitar

odlučuje koji uređaj trenutno koristi magistralu

Klasična PCI/AGP magistrala: svi uređaji čekaju svoj red na
istom kanalu.

36

Klasična sistemska magistrala

• Magistrala = zajednički komunikacioni kanal:

• linije za podatke
• linije za adrese
• upravljački signali

• Više uređaja deli isti kanal.
• Potrebna je arbitraža – ko sada sme da „priča“?
• Jednostavno i jeftino rešenje za male sisteme.

magistrala: podaci, adrese, upravljački signali

CPU RAM Disk Mrežna
kartica

arbitar

odlučuje koji uređaj trenutno koristi magistralu
37

Klasična sistemska magistrala

• Magistrala = zajednički komunikacioni kanal:
• linije za podatke

• linije za adrese
• upravljački signali

• Više uređaja deli isti kanal.
• Potrebna je arbitraža – ko sada sme da „priča“?
• Jednostavno i jeftino rešenje za male sisteme.

magistrala: podaci, adrese, upravljački signali

CPU RAM Disk Mrežna
kartica

arbitar

odlučuje koji uređaj trenutno koristi magistralu
37

Klasična sistemska magistrala

• Magistrala = zajednički komunikacioni kanal:
• linije za podatke
• linije za adrese

• upravljački signali

• Više uređaja deli isti kanal.
• Potrebna je arbitraža – ko sada sme da „priča“?
• Jednostavno i jeftino rešenje za male sisteme.

magistrala: podaci, adrese, upravljački signali

CPU RAM Disk Mrežna
kartica

arbitar

odlučuje koji uređaj trenutno koristi magistralu
37

Klasična sistemska magistrala

• Magistrala = zajednički komunikacioni kanal:
• linije za podatke
• linije za adrese
• upravljački signali

• Više uređaja deli isti kanal.
• Potrebna je arbitraža – ko sada sme da „priča“?
• Jednostavno i jeftino rešenje za male sisteme.

magistrala: podaci, adrese, upravljački signali

CPU RAM Disk Mrežna
kartica

arbitar

odlučuje koji uređaj trenutno koristi magistralu
37

Klasična sistemska magistrala

• Magistrala = zajednički komunikacioni kanal:
• linije za podatke
• linije za adrese
• upravljački signali

• Više uređaja deli isti kanal.

• Potrebna je arbitraža – ko sada sme da „priča“?
• Jednostavno i jeftino rešenje za male sisteme.

magistrala: podaci, adrese, upravljački signali

CPU RAM Disk Mrežna
kartica

arbitar

odlučuje koji uređaj trenutno koristi magistralu
37

Klasična sistemska magistrala

• Magistrala = zajednički komunikacioni kanal:
• linije za podatke
• linije za adrese
• upravljački signali

• Više uređaja deli isti kanal.
• Potrebna je arbitraža – ko sada sme da „priča“?

• Jednostavno i jeftino rešenje za male sisteme.

magistrala: podaci, adrese, upravljački signali

CPU RAM Disk Mrežna
kartica

arbitar

odlučuje koji uređaj trenutno koristi magistralu
37

Klasična sistemska magistrala

• Magistrala = zajednički komunikacioni kanal:
• linije za podatke
• linije za adrese
• upravljački signali

• Više uređaja deli isti kanal.
• Potrebna je arbitraža – ko sada sme da „priča“?
• Jednostavno i jeftino rešenje za male sisteme.

magistrala: podaci, adrese, upravljački signali

CPU RAM Disk Mrežna
kartica

arbitar

odlučuje koji uređaj trenutno koristi magistralu
37

Propusnost i latencija

• Propusnost (bandwidth) – koliko podataka može da
prođe u jedinici vremena.

• Širina magistrale w (u bitovima) i takt f (u Hz)
određuju idealnu propusnost:

B =
w · f

8
[B/s]

• Latencija (latency) – koliko vremena treba da jedan
konkretan podatak stigne do odredišta.

64-bitna magistrala na 100 MHz:

B =
64 · 100 · 106

8
≈ 0,8 GB/s

38

Propusnost i latencija

• Propusnost (bandwidth) – koliko podataka može da
prođe u jedinici vremena.

• Širina magistrale w (u bitovima) i takt f (u Hz)
određuju idealnu propusnost:

B =
w · f

8
[B/s]

• Latencija (latency) – koliko vremena treba da jedan
konkretan podatak stigne do odredišta.

64-bitna magistrala na 100 MHz:

B =
64 · 100 · 106

8
≈ 0,8 GB/s

38

Propusnost i latencija

• Propusnost (bandwidth) – koliko podataka može da
prođe u jedinici vremena.

• Širina magistrale w (u bitovima) i takt f (u Hz)
određuju idealnu propusnost:

B =
w · f

8
[B/s]

• Latencija (latency) – koliko vremena treba da jedan
konkretan podatak stigne do odredišta.

64-bitna magistrala na 100 MHz:

B =
64 · 100 · 106

8
≈ 0,8 GB/s

38

Propusnost i latencija

• Propusnost (bandwidth) – koliko podataka može da
prođe u jedinici vremena.

• Širina magistrale w (u bitovima) i takt f (u Hz)
određuju idealnu propusnost:

B =
w · f

8
[B/s]

• Latencija (latency) – koliko vremena treba da jedan
konkretan podatak stigne do odredišta.

64-bitna magistrala na 100 MHz:

B =
64 · 100 · 106

8
≈ 0,8 GB/s

38

Propusnost i latencija

• Propusnost (bandwidth) – koliko podataka može da
prođe u jedinici vremena.

• Širina magistrale w (u bitovima) i takt f (u Hz)
određuju idealnu propusnost:

B =
w · f

8
[B/s]

• Latencija (latency) – koliko vremena treba da jedan
konkretan podatak stigne do odredišta.

64-bitna magistrala na 100 MHz:

B =
64 · 100 · 106

8
≈ 0,8 GB/s

38

Zašto zajednička magistrala postaje usko grlo?

• Kako raste broj uređaja (GPU, NVMe, mreža 10/40GbE, USB,
...), više njih želi pristup istom kanalu.

• Arbitraža mora da raspodeli pristup → svi čekaju.

• Efektivna propusnost po uređaju opada, latencija raste.

• Rezultat: sistem čeka na prenos, iako CPU i memorija mogu
brže.

Umesto jedne zajedničke magistrale → mreža međupovezi-
vanja sa više paralelnih veza (point-to-point).

39

Zašto zajednička magistrala postaje usko grlo?

• Kako raste broj uređaja (GPU, NVMe, mreža 10/40GbE, USB,
...), više njih želi pristup istom kanalu.

• Arbitraža mora da raspodeli pristup → svi čekaju.

• Efektivna propusnost po uređaju opada, latencija raste.

• Rezultat: sistem čeka na prenos, iako CPU i memorija mogu
brže.

Umesto jedne zajedničke magistrale → mreža međupovezi-
vanja sa više paralelnih veza (point-to-point).

39

Zašto zajednička magistrala postaje usko grlo?

• Kako raste broj uređaja (GPU, NVMe, mreža 10/40GbE, USB,
...), više njih želi pristup istom kanalu.

• Arbitraža mora da raspodeli pristup → svi čekaju.

• Efektivna propusnost po uređaju opada, latencija raste.

• Rezultat: sistem čeka na prenos, iako CPU i memorija mogu
brže.

Umesto jedne zajedničke magistrale → mreža međupovezi-
vanja sa više paralelnih veza (point-to-point).

39

Zašto zajednička magistrala postaje usko grlo?

• Kako raste broj uređaja (GPU, NVMe, mreža 10/40GbE, USB,
...), više njih želi pristup istom kanalu.

• Arbitraža mora da raspodeli pristup → svi čekaju.

• Efektivna propusnost po uređaju opada, latencija raste.

• Rezultat: sistem čeka na prenos, iako CPU i memorija mogu
brže.

Umesto jedne zajedničke magistrale → mreža međupovezi-
vanja sa više paralelnih veza (point-to-point).

39

Zašto zajednička magistrala postaje usko grlo?

• Kako raste broj uređaja (GPU, NVMe, mreža 10/40GbE, USB,
...), više njih želi pristup istom kanalu.

• Arbitraža mora da raspodeli pristup → svi čekaju.

• Efektivna propusnost po uređaju opada, latencija raste.

• Rezultat: sistem čeka na prenos, iako CPU i memorija mogu
brže.

Umesto jedne zajedničke magistrale → mreža međupovezi-
vanja sa više paralelnih veza (point-to-point).

39

Zašto zajednička magistrala postaje usko grlo?

• Kako raste broj uređaja (GPU, NVMe, mreža 10/40GbE, USB,
...), više njih želi pristup istom kanalu.

• Arbitraža mora da raspodeli pristup → svi čekaju.

• Efektivna propusnost po uređaju opada, latencija raste.

• Rezultat: sistem čeka na prenos, iako CPU i memorija mogu
brže.

Umesto jedne zajedničke magistrale → mreža međupovezi-
vanja sa više paralelnih veza (point-to-point).

39

Od sistemske magistrale do PCI Express (PCIe)

CPU + memorijski kontroler

PCIe root kompleks

GPU (x16 link) NVMe SSD (x4 link) Mrezna kartica (x4)

Svaki uredjaj ima sopstveni point-to-point PCIe link ka root-kompleksu.

PCIe uklanja usko grlo deljene magistrale i omogućava visok
protok ka GPU, NVMe i drugim brzim uređajima.

40

Od sistemske magistrale do PCI Express (PCIe)

• Stari standardi: PCI, AGP – deljena magistrala.

• Naslednik: PCI Express (PCIe):

• point-to-point digitalne veze
• svaka komponenta ima svoj kanal ka root-kompleksu/čipsetu
• više prenosa može teći istovremeno

• PCIe linije (x1, x4, x8, x16) – više linija = veća propusnost.

CPU + memorijski kontroler

PCIe root kompleks

GPU (x16 link) NVMe SSD (x4 link) Mrezna kartica (x4)

Svaki uredjaj ima sopstveni point-to-point PCIe link ka root-kompleksu. 41

Od sistemske magistrale do PCI Express (PCIe)

• Stari standardi: PCI, AGP – deljena magistrala.
• Naslednik: PCI Express (PCIe):

• point-to-point digitalne veze
• svaka komponenta ima svoj kanal ka root-kompleksu/čipsetu
• više prenosa može teći istovremeno

• PCIe linije (x1, x4, x8, x16) – više linija = veća propusnost.

CPU + memorijski kontroler

PCIe root kompleks

GPU (x16 link) NVMe SSD (x4 link) Mrezna kartica (x4)

Svaki uredjaj ima sopstveni point-to-point PCIe link ka root-kompleksu. 41

Od sistemske magistrale do PCI Express (PCIe)

• Stari standardi: PCI, AGP – deljena magistrala.
• Naslednik: PCI Express (PCIe):

• point-to-point digitalne veze

• svaka komponenta ima svoj kanal ka root-kompleksu/čipsetu
• više prenosa može teći istovremeno

• PCIe linije (x1, x4, x8, x16) – više linija = veća propusnost.

CPU + memorijski kontroler

PCIe root kompleks

GPU (x16 link) NVMe SSD (x4 link) Mrezna kartica (x4)

Svaki uredjaj ima sopstveni point-to-point PCIe link ka root-kompleksu. 41

Od sistemske magistrale do PCI Express (PCIe)

• Stari standardi: PCI, AGP – deljena magistrala.
• Naslednik: PCI Express (PCIe):

• point-to-point digitalne veze
• svaka komponenta ima svoj kanal ka root-kompleksu/čipsetu

• više prenosa može teći istovremeno

• PCIe linije (x1, x4, x8, x16) – više linija = veća propusnost.

CPU + memorijski kontroler

PCIe root kompleks

GPU (x16 link) NVMe SSD (x4 link) Mrezna kartica (x4)

Svaki uredjaj ima sopstveni point-to-point PCIe link ka root-kompleksu. 41

Od sistemske magistrale do PCI Express (PCIe)

• Stari standardi: PCI, AGP – deljena magistrala.
• Naslednik: PCI Express (PCIe):

• point-to-point digitalne veze
• svaka komponenta ima svoj kanal ka root-kompleksu/čipsetu
• više prenosa može teći istovremeno

• PCIe linije (x1, x4, x8, x16) – više linija = veća propusnost.

CPU + memorijski kontroler

PCIe root kompleks

GPU (x16 link) NVMe SSD (x4 link) Mrezna kartica (x4)

Svaki uredjaj ima sopstveni point-to-point PCIe link ka root-kompleksu. 41

Od sistemske magistrale do PCI Express (PCIe)

• Stari standardi: PCI, AGP – deljena magistrala.
• Naslednik: PCI Express (PCIe):

• point-to-point digitalne veze
• svaka komponenta ima svoj kanal ka root-kompleksu/čipsetu
• više prenosa može teći istovremeno

• PCIe linije (x1, x4, x8, x16) – više linija = veća propusnost.

CPU + memorijski kontroler

PCIe root kompleks

GPU (x16 link) NVMe SSD (x4 link) Mrezna kartica (x4)

Svaki uredjaj ima sopstveni point-to-point PCIe link ka root-kompleksu. 41

Direktan pristup memoriji (DMA) preko PCIe

• Klasičan I/O: CPU čita podatke sa uređaja bajt po bajt i piše
u RAM.

• Sa DMA kontrolerom:

• CPU zada komandu: „kopiraj blok podataka odavde do ovde“.
• DMA sam prenosi podatke između uređaja i memorije.
• CPU se „oslobađa“ i može da radi nešto drugo.

• PCIe + DMA = efikasan, paralelan prenos velikih količina
podataka.

Kada DMA završi prenos, generiše prekid – procesor dobija
signal da su podaci spremni.

42

Direktan pristup memoriji (DMA) preko PCIe

• Klasičan I/O: CPU čita podatke sa uređaja bajt po bajt i piše
u RAM.

• Sa DMA kontrolerom:

• CPU zada komandu: „kopiraj blok podataka odavde do ovde“.
• DMA sam prenosi podatke između uređaja i memorije.
• CPU se „oslobađa“ i može da radi nešto drugo.

• PCIe + DMA = efikasan, paralelan prenos velikih količina
podataka.

Kada DMA završi prenos, generiše prekid – procesor dobija
signal da su podaci spremni.

42

Direktan pristup memoriji (DMA) preko PCIe

• Klasičan I/O: CPU čita podatke sa uređaja bajt po bajt i piše
u RAM.

• Sa DMA kontrolerom:
• CPU zada komandu: „kopiraj blok podataka odavde do ovde“.

• DMA sam prenosi podatke između uređaja i memorije.
• CPU se „oslobađa“ i može da radi nešto drugo.

• PCIe + DMA = efikasan, paralelan prenos velikih količina
podataka.

Kada DMA završi prenos, generiše prekid – procesor dobija
signal da su podaci spremni.

42

Direktan pristup memoriji (DMA) preko PCIe

• Klasičan I/O: CPU čita podatke sa uređaja bajt po bajt i piše
u RAM.

• Sa DMA kontrolerom:
• CPU zada komandu: „kopiraj blok podataka odavde do ovde“.
• DMA sam prenosi podatke između uređaja i memorije.

• CPU se „oslobađa“ i može da radi nešto drugo.

• PCIe + DMA = efikasan, paralelan prenos velikih količina
podataka.

Kada DMA završi prenos, generiše prekid – procesor dobija
signal da su podaci spremni.

42

Direktan pristup memoriji (DMA) preko PCIe

• Klasičan I/O: CPU čita podatke sa uređaja bajt po bajt i piše
u RAM.

• Sa DMA kontrolerom:
• CPU zada komandu: „kopiraj blok podataka odavde do ovde“.
• DMA sam prenosi podatke između uređaja i memorije.
• CPU se „oslobađa“ i može da radi nešto drugo.

• PCIe + DMA = efikasan, paralelan prenos velikih količina
podataka.

Kada DMA završi prenos, generiše prekid – procesor dobija
signal da su podaci spremni.

42

Direktan pristup memoriji (DMA) preko PCIe

• Klasičan I/O: CPU čita podatke sa uređaja bajt po bajt i piše
u RAM.

• Sa DMA kontrolerom:
• CPU zada komandu: „kopiraj blok podataka odavde do ovde“.
• DMA sam prenosi podatke između uređaja i memorije.
• CPU se „oslobađa“ i može da radi nešto drugo.

• PCIe + DMA = efikasan, paralelan prenos velikih količina
podataka.

Kada DMA završi prenos, generiše prekid – procesor dobija
signal da su podaci spremni.

42

Direktan pristup memoriji (DMA) preko PCIe

• Klasičan I/O: CPU čita podatke sa uređaja bajt po bajt i piše
u RAM.

• Sa DMA kontrolerom:
• CPU zada komandu: „kopiraj blok podataka odavde do ovde“.
• DMA sam prenosi podatke između uređaja i memorije.
• CPU se „oslobađa“ i može da radi nešto drugo.

• PCIe + DMA = efikasan, paralelan prenos velikih količina
podataka.

Kada DMA završi prenos, generiše prekid – procesor dobija
signal da su podaci spremni.

42

Direktan pristup memoriji (DMA) preko PCIe

• Klasičan I/O: CPU čita podatke sa uređaja bajt po bajt i piše
u RAM.

• Sa DMA kontrolerom:
• CPU zada komandu: „kopiraj blok podataka odavde do ovde“.
• DMA sam prenosi podatke između uređaja i memorije.
• CPU se „oslobađa“ i može da radi nešto drugo.

• PCIe + DMA = efikasan, paralelan prenos velikih količina
podataka.

Kada DMA završi prenos, generiše prekid – procesor dobija
signal da su podaci spremni.

42

Čipset i specijalizovani kontroleri

CPU + IMCRAM
DDR GPU

NVMe SSD

PCIe x16

PCIe x4

PCH

DMI / PCIe

USB SATA

Mrezni kontrolerSPI flash (UEFI)

Čipset + kontroleri = „saobraćajna policija“ koja usmerava
protok podataka između CPU, memorije i uređaja.

43

Čipset i specijalizovani kontroleri

• Nekada: severni most (CPU–RAM–GPU) i južni most
(sporiji I/O).

• Danas:

• memorijski kontroler i PCIe često u samom CPU-u,
• čipset (PCH) povezuje USB, SATA, dodatne PCIe linije,

mrežu...

• Svaki uređaj ima sopstveni kontroler (disk, mreža, USB...).

CPU + IMCRAM
DDR GPU

NVMe SSD

PCIe x16

PCIe x4

PCH

DMI / PCIe

USB SATA

Mrezni kontrolerSPI flash (UEFI)

44

Čipset i specijalizovani kontroleri

• Nekada: severni most (CPU–RAM–GPU) i južni most
(sporiji I/O).

• Danas:

• memorijski kontroler i PCIe često u samom CPU-u,
• čipset (PCH) povezuje USB, SATA, dodatne PCIe linije,

mrežu...

• Svaki uređaj ima sopstveni kontroler (disk, mreža, USB...).

CPU + IMCRAM
DDR GPU

NVMe SSD

PCIe x16

PCIe x4

PCH

DMI / PCIe

USB SATA

Mrezni kontrolerSPI flash (UEFI)

44

Čipset i specijalizovani kontroleri

• Nekada: severni most (CPU–RAM–GPU) i južni most
(sporiji I/O).

• Danas:
• memorijski kontroler i PCIe često u samom CPU-u,

• čipset (PCH) povezuje USB, SATA, dodatne PCIe linije,
mrežu...

• Svaki uređaj ima sopstveni kontroler (disk, mreža, USB...).

CPU + IMCRAM
DDR GPU

NVMe SSD

PCIe x16

PCIe x4

PCH

DMI / PCIe

USB SATA

Mrezni kontrolerSPI flash (UEFI)

44

Čipset i specijalizovani kontroleri

• Nekada: severni most (CPU–RAM–GPU) i južni most
(sporiji I/O).

• Danas:
• memorijski kontroler i PCIe često u samom CPU-u,
• čipset (PCH) povezuje USB, SATA, dodatne PCIe linije,

mrežu...

• Svaki uređaj ima sopstveni kontroler (disk, mreža, USB...).

CPU + IMCRAM
DDR GPU

NVMe SSD

PCIe x16

PCIe x4

PCH

DMI / PCIe

USB SATA

Mrezni kontrolerSPI flash (UEFI)

44

Čipset i specijalizovani kontroleri

• Nekada: severni most (CPU–RAM–GPU) i južni most
(sporiji I/O).

• Danas:
• memorijski kontroler i PCIe često u samom CPU-u,
• čipset (PCH) povezuje USB, SATA, dodatne PCIe linije,

mrežu...

• Svaki uređaj ima sopstveni kontroler (disk, mreža, USB...).

CPU + IMCRAM
DDR GPU

NVMe SSD

PCIe x16

PCIe x4

PCH

DMI / PCIe

USB SATA

Mrezni kontrolerSPI flash (UEFI)

44

Ulazno–izlazni podsistem

Ulazno–izlazni podsistem (I/O)

• Uređaji: diskovi, tastature, miševi, mrežne kartice, GPU,
USB uređaji...

• Interfejsi i standardi: USB, SATA, PCIe, NVMe,
Ethernet...

• Kontroleri: disk kontroler, USB kontroler, mrežni
kontroler...

I/O podsistem je sloj koji „spaja“ procesor i memoriju sa spolj-
nim svetom – bez njega računar bi bio zatvorena kutija.

45

Ulazno–izlazni podsistem (I/O)

• Uređaji: diskovi, tastature, miševi, mrežne kartice, GPU,
USB uređaji...

• Interfejsi i standardi: USB, SATA, PCIe, NVMe,
Ethernet...

• Kontroleri: disk kontroler, USB kontroler, mrežni
kontroler...

I/O podsistem je sloj koji „spaja“ procesor i memoriju sa spolj-
nim svetom – bez njega računar bi bio zatvorena kutija.

45

Ulazno–izlazni podsistem (I/O)

• Uređaji: diskovi, tastature, miševi, mrežne kartice, GPU,
USB uređaji...

• Interfejsi i standardi: USB, SATA, PCIe, NVMe,
Ethernet...

• Kontroleri: disk kontroler, USB kontroler, mrežni
kontroler...

I/O podsistem je sloj koji „spaja“ procesor i memoriju sa spolj-
nim svetom – bez njega računar bi bio zatvorena kutija.

45

Ulazno–izlazni podsistem (I/O)

• Uređaji: diskovi, tastature, miševi, mrežne kartice, GPU,
USB uređaji...

• Interfejsi i standardi: USB, SATA, PCIe, NVMe,
Ethernet...

• Kontroleri: disk kontroler, USB kontroler, mrežni
kontroler...

I/O podsistem je sloj koji „spaja“ procesor i memoriju sa spolj-
nim svetom – bez njega računar bi bio zatvorena kutija.

45

Ulazno–izlazni podsistem (I/O)

• Uređaji: diskovi, tastature, miševi, mrežne kartice, GPU,
USB uređaji...

• Interfejsi i standardi: USB, SATA, PCIe, NVMe,
Ethernet...

• Kontroleri: disk kontroler, USB kontroler, mrežni
kontroler...

I/O podsistem je sloj koji „spaja“ procesor i memoriju sa spolj-
nim svetom – bez njega računar bi bio zatvorena kutija.

45

Uloga kontrolera i prekida

• CPU ne razgovara direktno sa diskom ili mrežnom karticom.

• Umesto toga:

• CPU šalje komandu kontroleru (npr. „pročitaj sektor 12345“).
• Kontroler prevodi komandu u električne signale i protokol

uređaja.
• Kada je gotovo, javlja CPU-u preko prekida.

• Prednost: CPU ne troši vreme na čekanje svakog bajta.

Disk kontroler optimizuje redosled čitanja sektora, koristi sop-
stveni keš i minimizuje pomeranje glave → daleko bolje isko-
rišćenje diska.

46

Uloga kontrolera i prekida

• CPU ne razgovara direktno sa diskom ili mrežnom karticom.

• Umesto toga:

• CPU šalje komandu kontroleru (npr. „pročitaj sektor 12345“).
• Kontroler prevodi komandu u električne signale i protokol

uređaja.
• Kada je gotovo, javlja CPU-u preko prekida.

• Prednost: CPU ne troši vreme na čekanje svakog bajta.

Disk kontroler optimizuje redosled čitanja sektora, koristi sop-
stveni keš i minimizuje pomeranje glave → daleko bolje isko-
rišćenje diska.

46

Uloga kontrolera i prekida

• CPU ne razgovara direktno sa diskom ili mrežnom karticom.

• Umesto toga:
• CPU šalje komandu kontroleru (npr. „pročitaj sektor 12345“).

• Kontroler prevodi komandu u električne signale i protokol
uređaja.

• Kada je gotovo, javlja CPU-u preko prekida.

• Prednost: CPU ne troši vreme na čekanje svakog bajta.

Disk kontroler optimizuje redosled čitanja sektora, koristi sop-
stveni keš i minimizuje pomeranje glave → daleko bolje isko-
rišćenje diska.

46

Uloga kontrolera i prekida

• CPU ne razgovara direktno sa diskom ili mrežnom karticom.

• Umesto toga:
• CPU šalje komandu kontroleru (npr. „pročitaj sektor 12345“).
• Kontroler prevodi komandu u električne signale i protokol

uređaja.

• Kada je gotovo, javlja CPU-u preko prekida.

• Prednost: CPU ne troši vreme na čekanje svakog bajta.

Disk kontroler optimizuje redosled čitanja sektora, koristi sop-
stveni keš i minimizuje pomeranje glave → daleko bolje isko-
rišćenje diska.

46

Uloga kontrolera i prekida

• CPU ne razgovara direktno sa diskom ili mrežnom karticom.

• Umesto toga:
• CPU šalje komandu kontroleru (npr. „pročitaj sektor 12345“).
• Kontroler prevodi komandu u električne signale i protokol

uređaja.
• Kada je gotovo, javlja CPU-u preko prekida.

• Prednost: CPU ne troši vreme na čekanje svakog bajta.

Disk kontroler optimizuje redosled čitanja sektora, koristi sop-
stveni keš i minimizuje pomeranje glave → daleko bolje isko-
rišćenje diska.

46

Uloga kontrolera i prekida

• CPU ne razgovara direktno sa diskom ili mrežnom karticom.

• Umesto toga:
• CPU šalje komandu kontroleru (npr. „pročitaj sektor 12345“).
• Kontroler prevodi komandu u električne signale i protokol

uređaja.
• Kada je gotovo, javlja CPU-u preko prekida.

• Prednost: CPU ne troši vreme na čekanje svakog bajta.

Disk kontroler optimizuje redosled čitanja sektora, koristi sop-
stveni keš i minimizuje pomeranje glave → daleko bolje isko-
rišćenje diska.

46

Uloga kontrolera i prekida

• CPU ne razgovara direktno sa diskom ili mrežnom karticom.

• Umesto toga:
• CPU šalje komandu kontroleru (npr. „pročitaj sektor 12345“).
• Kontroler prevodi komandu u električne signale i protokol

uređaja.
• Kada je gotovo, javlja CPU-u preko prekida.

• Prednost: CPU ne troši vreme na čekanje svakog bajta.

Disk kontroler optimizuje redosled čitanja sektora, koristi sop-
stveni keš i minimizuje pomeranje glave → daleko bolje isko-
rišćenje diska.

46

Uloga kontrolera i prekida

• CPU ne razgovara direktno sa diskom ili mrežnom karticom.

• Umesto toga:
• CPU šalje komandu kontroleru (npr. „pročitaj sektor 12345“).
• Kontroler prevodi komandu u električne signale i protokol

uređaja.
• Kada je gotovo, javlja CPU-u preko prekida.

• Prednost: CPU ne troši vreme na čekanje svakog bajta.

Disk kontroler optimizuje redosled čitanja sektora, koristi sop-
stveni keš i minimizuje pomeranje glave → daleko bolje isko-
rišćenje diska.

46

Standardi i interfejsi: USB, PCIe, NVMe

• USB – univerzalna serijska
magistrala:

• tastature, miševi, kamere,
fleš diskovi...

• novije verzije: USB 3.2,
USB4 – desetine Gb/s.

• prenosi i podatke i
napajanje.

• PCIe – glavni „autoput“ za
GPU, NVMe, mrežu.

• NVMe – protokol za
SSD preko PCIe:

• hiljade paralelnih
redova komandi,

• vrlo mala latencija
(mikrosekunde),

• propusnost više GB/s
po uređaju.

• Kombinacija PCIe +
NVMe je standard za
brze diskove danas.

47

Standardi i interfejsi: USB, PCIe, NVMe

• USB – univerzalna serijska
magistrala:

• tastature, miševi, kamere,
fleš diskovi...

• novije verzije: USB 3.2,
USB4 – desetine Gb/s.

• prenosi i podatke i
napajanje.

• PCIe – glavni „autoput“ za
GPU, NVMe, mrežu.

• NVMe – protokol za
SSD preko PCIe:

• hiljade paralelnih
redova komandi,

• vrlo mala latencija
(mikrosekunde),

• propusnost više GB/s
po uređaju.

• Kombinacija PCIe +
NVMe je standard za
brze diskove danas.

47

Standardi i interfejsi: USB, PCIe, NVMe

• USB – univerzalna serijska
magistrala:

• tastature, miševi, kamere,
fleš diskovi...

• novije verzije: USB 3.2,
USB4 – desetine Gb/s.

• prenosi i podatke i
napajanje.

• PCIe – glavni „autoput“ za
GPU, NVMe, mrežu.

• NVMe – protokol za
SSD preko PCIe:

• hiljade paralelnih
redova komandi,

• vrlo mala latencija
(mikrosekunde),

• propusnost više GB/s
po uređaju.

• Kombinacija PCIe +
NVMe je standard za
brze diskove danas.

47

Standardi i interfejsi: USB, PCIe, NVMe

• USB – univerzalna serijska
magistrala:

• tastature, miševi, kamere,
fleš diskovi...

• novije verzije: USB 3.2,
USB4 – desetine Gb/s.

• prenosi i podatke i
napajanje.

• PCIe – glavni „autoput“ za
GPU, NVMe, mrežu.

• NVMe – protokol za
SSD preko PCIe:

• hiljade paralelnih
redova komandi,

• vrlo mala latencija
(mikrosekunde),

• propusnost više GB/s
po uređaju.

• Kombinacija PCIe +
NVMe je standard za
brze diskove danas.

47

Standardi i interfejsi: USB, PCIe, NVMe

• USB – univerzalna serijska
magistrala:

• tastature, miševi, kamere,
fleš diskovi...

• novije verzije: USB 3.2,
USB4 – desetine Gb/s.

• prenosi i podatke i
napajanje.

• PCIe – glavni „autoput“ za
GPU, NVMe, mrežu.

• NVMe – protokol za
SSD preko PCIe:

• hiljade paralelnih
redova komandi,

• vrlo mala latencija
(mikrosekunde),

• propusnost više GB/s
po uređaju.

• Kombinacija PCIe +
NVMe je standard za
brze diskove danas.

47

Standardi i interfejsi: USB, PCIe, NVMe

• USB – univerzalna serijska
magistrala:

• tastature, miševi, kamere,
fleš diskovi...

• novije verzije: USB 3.2,
USB4 – desetine Gb/s.

• prenosi i podatke i
napajanje.

• PCIe – glavni „autoput“ za
GPU, NVMe, mrežu.

• NVMe – protokol za
SSD preko PCIe:

• hiljade paralelnih
redova komandi,

• vrlo mala latencija
(mikrosekunde),

• propusnost više GB/s
po uređaju.

• Kombinacija PCIe +
NVMe je standard za
brze diskove danas.

47

Standardi i interfejsi: USB, PCIe, NVMe

• USB – univerzalna serijska
magistrala:

• tastature, miševi, kamere,
fleš diskovi...

• novije verzije: USB 3.2,
USB4 – desetine Gb/s.

• prenosi i podatke i
napajanje.

• PCIe – glavni „autoput“ za
GPU, NVMe, mrežu.

• NVMe – protokol za
SSD preko PCIe:

• hiljade paralelnih
redova komandi,

• vrlo mala latencija
(mikrosekunde),

• propusnost više GB/s
po uređaju.

• Kombinacija PCIe +
NVMe je standard za
brze diskove danas.

47

Standardi i interfejsi: USB, PCIe, NVMe

• USB – univerzalna serijska
magistrala:

• tastature, miševi, kamere,
fleš diskovi...

• novije verzije: USB 3.2,
USB4 – desetine Gb/s.

• prenosi i podatke i
napajanje.

• PCIe – glavni „autoput“ za
GPU, NVMe, mrežu.

• NVMe – protokol za
SSD preko PCIe:

• hiljade paralelnih
redova komandi,

• vrlo mala latencija
(mikrosekunde),

• propusnost više GB/s
po uređaju.

• Kombinacija PCIe +
NVMe je standard za
brze diskove danas.

47

Standardi i interfejsi: USB, PCIe, NVMe

• USB – univerzalna serijska
magistrala:

• tastature, miševi, kamere,
fleš diskovi...

• novije verzije: USB 3.2,
USB4 – desetine Gb/s.

• prenosi i podatke i
napajanje.

• PCIe – glavni „autoput“ za
GPU, NVMe, mrežu.

• NVMe – protokol za
SSD preko PCIe:

• hiljade paralelnih
redova komandi,

• vrlo mala latencija
(mikrosekunde),

• propusnost više GB/s
po uređaju.

• Kombinacija PCIe +
NVMe je standard za
brze diskove danas.

47

Standardi i interfejsi: USB, PCIe, NVMe

• USB – univerzalna serijska
magistrala:

• tastature, miševi, kamere,
fleš diskovi...

• novije verzije: USB 3.2,
USB4 – desetine Gb/s.

• prenosi i podatke i
napajanje.

• PCIe – glavni „autoput“ za
GPU, NVMe, mrežu.

• NVMe – protokol za
SSD preko PCIe:

• hiljade paralelnih
redova komandi,

• vrlo mala latencija
(mikrosekunde),

• propusnost više GB/s
po uređaju.

• Kombinacija PCIe +
NVMe je standard za
brze diskove danas.

47

Slojna organizacija I/O sistema

• Aplikacije – čitaju i pišu fajlove, komuniciraju preko mreže.

• Operativni sistem – fajl sistem, mrežni stek, I/O podsystem.

• Drajveri – znaju detalje konkretnog uređaja i kontrolera.

• Kontroleri – prevode komande u signale, rade DMA prenose.

• Fizički uređaji – disk ploče, flash čipovi, mrežni PHY, itd.

Ovakva hijerarhija omogućava da aplikacije rade isto, bez ob-
zira na konkretan model SSD-a, mrežne kartice ili tastature.

48

Slojna organizacija I/O sistema

• Aplikacije – čitaju i pišu fajlove, komuniciraju preko mreže.

• Operativni sistem – fajl sistem, mrežni stek, I/O podsystem.

• Drajveri – znaju detalje konkretnog uređaja i kontrolera.

• Kontroleri – prevode komande u signale, rade DMA prenose.

• Fizički uređaji – disk ploče, flash čipovi, mrežni PHY, itd.

Ovakva hijerarhija omogućava da aplikacije rade isto, bez ob-
zira na konkretan model SSD-a, mrežne kartice ili tastature.

48

Slojna organizacija I/O sistema

• Aplikacije – čitaju i pišu fajlove, komuniciraju preko mreže.

• Operativni sistem – fajl sistem, mrežni stek, I/O podsystem.

• Drajveri – znaju detalje konkretnog uređaja i kontrolera.

• Kontroleri – prevode komande u signale, rade DMA prenose.

• Fizički uređaji – disk ploče, flash čipovi, mrežni PHY, itd.

Ovakva hijerarhija omogućava da aplikacije rade isto, bez ob-
zira na konkretan model SSD-a, mrežne kartice ili tastature.

48

Slojna organizacija I/O sistema

• Aplikacije – čitaju i pišu fajlove, komuniciraju preko mreže.

• Operativni sistem – fajl sistem, mrežni stek, I/O podsystem.

• Drajveri – znaju detalje konkretnog uređaja i kontrolera.

• Kontroleri – prevode komande u signale, rade DMA prenose.

• Fizički uređaji – disk ploče, flash čipovi, mrežni PHY, itd.

Ovakva hijerarhija omogućava da aplikacije rade isto, bez ob-
zira na konkretan model SSD-a, mrežne kartice ili tastature.

48

Slojna organizacija I/O sistema

• Aplikacije – čitaju i pišu fajlove, komuniciraju preko mreže.

• Operativni sistem – fajl sistem, mrežni stek, I/O podsystem.

• Drajveri – znaju detalje konkretnog uređaja i kontrolera.

• Kontroleri – prevode komande u signale, rade DMA prenose.

• Fizički uređaji – disk ploče, flash čipovi, mrežni PHY, itd.

Ovakva hijerarhija omogućava da aplikacije rade isto, bez ob-
zira na konkretan model SSD-a, mrežne kartice ili tastature.

48

Slojna organizacija I/O sistema

• Aplikacije – čitaju i pišu fajlove, komuniciraju preko mreže.

• Operativni sistem – fajl sistem, mrežni stek, I/O podsystem.

• Drajveri – znaju detalje konkretnog uređaja i kontrolera.

• Kontroleri – prevode komande u signale, rade DMA prenose.

• Fizički uređaji – disk ploče, flash čipovi, mrežni PHY, itd.

Ovakva hijerarhija omogućava da aplikacije rade isto, bez ob-
zira na konkretan model SSD-a, mrežne kartice ili tastature.

48

Slojna organizacija I/O sistema

• Aplikacije – čitaju i pišu fajlove, komuniciraju preko mreže.

• Operativni sistem – fajl sistem, mrežni stek, I/O podsystem.

• Drajveri – znaju detalje konkretnog uređaja i kontrolera.

• Kontroleri – prevode komande u signale, rade DMA prenose.

• Fizički uređaji – disk ploče, flash čipovi, mrežni PHY, itd.

Ovakva hijerarhija omogućava da aplikacije rade isto, bez ob-
zira na konkretan model SSD-a, mrežne kartice ili tastature.

48

Integracija na matičnoj ploči

• Matična ploča = fizička
osnova sistema:

• nosi CPU, RAM module,
slotove za GPU/NVMe,

• vodi komunikacione linije
(PCIe, memorijski kanali),

• obezbeđuje napajanje i
sinhronizaciju.

• Čipset (PCH) upravlja
perifernim uređajima, dodatnim
PCIe linijama, USB, SATA,
mrežom.

Savremeni CPU već
sadrži memorijski
kontroler i deo PCIe
linija – ostatak
funkcionalnosti je u
PCH čipu.

49

Integracija na matičnoj ploči

• Matična ploča = fizička
osnova sistema:

• nosi CPU, RAM module,
slotove za GPU/NVMe,

• vodi komunikacione linije
(PCIe, memorijski kanali),

• obezbeđuje napajanje i
sinhronizaciju.

• Čipset (PCH) upravlja
perifernim uređajima, dodatnim
PCIe linijama, USB, SATA,
mrežom.

Savremeni CPU već
sadrži memorijski
kontroler i deo PCIe
linija – ostatak
funkcionalnosti je u
PCH čipu.

49

Integracija na matičnoj ploči

• Matična ploča = fizička
osnova sistema:

• nosi CPU, RAM module,
slotove za GPU/NVMe,

• vodi komunikacione linije
(PCIe, memorijski kanali),

• obezbeđuje napajanje i
sinhronizaciju.

• Čipset (PCH) upravlja
perifernim uređajima, dodatnim
PCIe linijama, USB, SATA,
mrežom.

Savremeni CPU već
sadrži memorijski
kontroler i deo PCIe
linija – ostatak
funkcionalnosti je u
PCH čipu.

49

Integracija na matičnoj ploči

• Matična ploča = fizička
osnova sistema:

• nosi CPU, RAM module,
slotove za GPU/NVMe,

• vodi komunikacione linije
(PCIe, memorijski kanali),

• obezbeđuje napajanje i
sinhronizaciju.

• Čipset (PCH) upravlja
perifernim uređajima, dodatnim
PCIe linijama, USB, SATA,
mrežom.

Savremeni CPU već
sadrži memorijski
kontroler i deo PCIe
linija – ostatak
funkcionalnosti je u
PCH čipu.

49

Integracija na matičnoj ploči

• Matična ploča = fizička
osnova sistema:

• nosi CPU, RAM module,
slotove za GPU/NVMe,

• vodi komunikacione linije
(PCIe, memorijski kanali),

• obezbeđuje napajanje i
sinhronizaciju.

• Čipset (PCH) upravlja
perifernim uređajima, dodatnim
PCIe linijama, USB, SATA,
mrežom.

Savremeni CPU već
sadrži memorijski
kontroler i deo PCIe
linija – ostatak
funkcionalnosti je u
PCH čipu.

49

Integracija na matičnoj ploči

RAM
CPU

jezgra, keš, IMC
RAM

GPU
PCIe x16

NVMe SSD
M.2 / PCIe x4

Čipset (PCH)

SATA portovi USB kontroler Ethernet kontroler

UEFI firmware
SPI flash

memorijski kanal memorijski kanal

PCIe x16

PCIe x4

DMI / PCIe

SPI

reset vektor

50

BIOS i UEFI – ko zapravo „prvi“ radi?

• Kada pritisnemo dugme za uključivanje:

• CPU počinje da izvršava kod iz male flash memorije na ploči.
• Taj kod je BIOS ili savremeniji UEFI firmware.

• BIOS (klasično):

• monolitan, u ROM-u, teško ažuriranje,
• radi POST test, inicijalizuje osnovni hardver, pokreće OS.

• Nedostaci: ograničena veličina, slaba podrška za nove uređaje,
velike diskove, mrežu...

51

BIOS i UEFI – ko zapravo „prvi“ radi?

• Kada pritisnemo dugme za uključivanje:
• CPU počinje da izvršava kod iz male flash memorije na ploči.

• Taj kod je BIOS ili savremeniji UEFI firmware.

• BIOS (klasično):

• monolitan, u ROM-u, teško ažuriranje,
• radi POST test, inicijalizuje osnovni hardver, pokreće OS.

• Nedostaci: ograničena veličina, slaba podrška za nove uređaje,
velike diskove, mrežu...

51

BIOS i UEFI – ko zapravo „prvi“ radi?

• Kada pritisnemo dugme za uključivanje:
• CPU počinje da izvršava kod iz male flash memorije na ploči.
• Taj kod je BIOS ili savremeniji UEFI firmware.

• BIOS (klasično):

• monolitan, u ROM-u, teško ažuriranje,
• radi POST test, inicijalizuje osnovni hardver, pokreće OS.

• Nedostaci: ograničena veličina, slaba podrška za nove uređaje,
velike diskove, mrežu...

51

BIOS i UEFI – ko zapravo „prvi“ radi?

• Kada pritisnemo dugme za uključivanje:
• CPU počinje da izvršava kod iz male flash memorije na ploči.
• Taj kod je BIOS ili savremeniji UEFI firmware.

• BIOS (klasično):

• monolitan, u ROM-u, teško ažuriranje,
• radi POST test, inicijalizuje osnovni hardver, pokreće OS.

• Nedostaci: ograničena veličina, slaba podrška za nove uređaje,
velike diskove, mrežu...

51

BIOS i UEFI – ko zapravo „prvi“ radi?

• Kada pritisnemo dugme za uključivanje:
• CPU počinje da izvršava kod iz male flash memorije na ploči.
• Taj kod je BIOS ili savremeniji UEFI firmware.

• BIOS (klasično):
• monolitan, u ROM-u, teško ažuriranje,

• radi POST test, inicijalizuje osnovni hardver, pokreće OS.

• Nedostaci: ograničena veličina, slaba podrška za nove uređaje,
velike diskove, mrežu...

51

BIOS i UEFI – ko zapravo „prvi“ radi?

• Kada pritisnemo dugme za uključivanje:
• CPU počinje da izvršava kod iz male flash memorije na ploči.
• Taj kod je BIOS ili savremeniji UEFI firmware.

• BIOS (klasično):
• monolitan, u ROM-u, teško ažuriranje,
• radi POST test, inicijalizuje osnovni hardver, pokreće OS.

• Nedostaci: ograničena veličina, slaba podrška za nove uređaje,
velike diskove, mrežu...

51

BIOS i UEFI – ko zapravo „prvi“ radi?

• Kada pritisnemo dugme za uključivanje:
• CPU počinje da izvršava kod iz male flash memorije na ploči.
• Taj kod je BIOS ili savremeniji UEFI firmware.

• BIOS (klasično):
• monolitan, u ROM-u, teško ažuriranje,
• radi POST test, inicijalizuje osnovni hardver, pokreće OS.

• Nedostaci: ograničena veličina, slaba podrška za nove uređaje,
velike diskove, mrežu...

51

UEFI – savremeni firmware

• UEFI = modularan firmware u malom flash čipu (SPI flash).

• Može:

• da koristi mrežne drajvere,
• da prikaže grafički interfejs,
• da pokreće pomoćne aplikacije pre OS-a.

• Podržava Secure Boot, veće diskove, moderni hardver.

• Može se ažurirati (flešovanje BIOS/UEFI-ja).

UEFI inicijalizuje hardver, pronalazi uređaj za boot, učitava
boot loader, i tek tada kontrolu preuzima operativni sistem.

52

UEFI – savremeni firmware

• UEFI = modularan firmware u malom flash čipu (SPI flash).

• Može:

• da koristi mrežne drajvere,
• da prikaže grafički interfejs,
• da pokreće pomoćne aplikacije pre OS-a.

• Podržava Secure Boot, veće diskove, moderni hardver.

• Može se ažurirati (flešovanje BIOS/UEFI-ja).

UEFI inicijalizuje hardver, pronalazi uređaj za boot, učitava
boot loader, i tek tada kontrolu preuzima operativni sistem.

52

UEFI – savremeni firmware

• UEFI = modularan firmware u malom flash čipu (SPI flash).

• Može:
• da koristi mrežne drajvere,

• da prikaže grafički interfejs,
• da pokreće pomoćne aplikacije pre OS-a.

• Podržava Secure Boot, veće diskove, moderni hardver.

• Može se ažurirati (flešovanje BIOS/UEFI-ja).

UEFI inicijalizuje hardver, pronalazi uređaj za boot, učitava
boot loader, i tek tada kontrolu preuzima operativni sistem.

52

UEFI – savremeni firmware

• UEFI = modularan firmware u malom flash čipu (SPI flash).

• Može:
• da koristi mrežne drajvere,
• da prikaže grafički interfejs,

• da pokreće pomoćne aplikacije pre OS-a.

• Podržava Secure Boot, veće diskove, moderni hardver.

• Može se ažurirati (flešovanje BIOS/UEFI-ja).

UEFI inicijalizuje hardver, pronalazi uređaj za boot, učitava
boot loader, i tek tada kontrolu preuzima operativni sistem.

52

UEFI – savremeni firmware

• UEFI = modularan firmware u malom flash čipu (SPI flash).

• Može:
• da koristi mrežne drajvere,
• da prikaže grafički interfejs,
• da pokreće pomoćne aplikacije pre OS-a.

• Podržava Secure Boot, veće diskove, moderni hardver.

• Može se ažurirati (flešovanje BIOS/UEFI-ja).

UEFI inicijalizuje hardver, pronalazi uređaj za boot, učitava
boot loader, i tek tada kontrolu preuzima operativni sistem.

52

UEFI – savremeni firmware

• UEFI = modularan firmware u malom flash čipu (SPI flash).

• Može:
• da koristi mrežne drajvere,
• da prikaže grafički interfejs,
• da pokreće pomoćne aplikacije pre OS-a.

• Podržava Secure Boot, veće diskove, moderni hardver.

• Može se ažurirati (flešovanje BIOS/UEFI-ja).

UEFI inicijalizuje hardver, pronalazi uređaj za boot, učitava
boot loader, i tek tada kontrolu preuzima operativni sistem.

52

UEFI – savremeni firmware

• UEFI = modularan firmware u malom flash čipu (SPI flash).

• Može:
• da koristi mrežne drajvere,
• da prikaže grafički interfejs,
• da pokreće pomoćne aplikacije pre OS-a.

• Podržava Secure Boot, veće diskove, moderni hardver.

• Može se ažurirati (flešovanje BIOS/UEFI-ja).

UEFI inicijalizuje hardver, pronalazi uređaj za boot, učitava
boot loader, i tek tada kontrolu preuzima operativni sistem.

52

UEFI – savremeni firmware

• UEFI = modularan firmware u malom flash čipu (SPI flash).

• Može:
• da koristi mrežne drajvere,
• da prikaže grafički interfejs,
• da pokreće pomoćne aplikacije pre OS-a.

• Podržava Secure Boot, veće diskove, moderni hardver.

• Može se ažurirati (flešovanje BIOS/UEFI-ja).

UEFI inicijalizuje hardver, pronalazi uređaj za boot, učitava
boot loader, i tek tada kontrolu preuzima operativni sistem.

52

UEFI – savremeni firmware

• UEFI = modularan firmware u malom flash čipu (SPI flash).

• Može:
• da koristi mrežne drajvere,
• da prikaže grafički interfejs,
• da pokreće pomoćne aplikacije pre OS-a.

• Podržava Secure Boot, veće diskove, moderni hardver.

• Može se ažurirati (flešovanje BIOS/UEFI-ja).

UEFI inicijalizuje hardver, pronalazi uređaj za boot, učitava
boot loader, i tek tada kontrolu preuzima operativni sistem.

52

Trendovi: energija kao ograničenje

• Više nije problem „da li možemo da dodamo tranzistore“, već:
koliko njih sme da bude upaljeno odjednom.

• Pojmovi:

• vršna snaga (peak power)
• TDP – Thermal Design Power
• energija po zadatku (energy per task)

• Često je bolje: uraditi posao brzo, pa spustiti sve u sleep, nego
stalno raditi „polako“.

53

Trendovi: energija kao ograničenje

• Više nije problem „da li možemo da dodamo tranzistore“, već:
koliko njih sme da bude upaljeno odjednom.

• Pojmovi:

• vršna snaga (peak power)
• TDP – Thermal Design Power
• energija po zadatku (energy per task)

• Često je bolje: uraditi posao brzo, pa spustiti sve u sleep, nego
stalno raditi „polako“.

53

Trendovi: energija kao ograničenje

• Više nije problem „da li možemo da dodamo tranzistore“, već:
koliko njih sme da bude upaljeno odjednom.

• Pojmovi:
• vršna snaga (peak power)

• TDP – Thermal Design Power
• energija po zadatku (energy per task)

• Često je bolje: uraditi posao brzo, pa spustiti sve u sleep, nego
stalno raditi „polako“.

53

Trendovi: energija kao ograničenje

• Više nije problem „da li možemo da dodamo tranzistore“, već:
koliko njih sme da bude upaljeno odjednom.

• Pojmovi:
• vršna snaga (peak power)
• TDP – Thermal Design Power

• energija po zadatku (energy per task)

• Često je bolje: uraditi posao brzo, pa spustiti sve u sleep, nego
stalno raditi „polako“.

53

Trendovi: energija kao ograničenje

• Više nije problem „da li možemo da dodamo tranzistore“, već:
koliko njih sme da bude upaljeno odjednom.

• Pojmovi:
• vršna snaga (peak power)
• TDP – Thermal Design Power
• energija po zadatku (energy per task)

• Često je bolje: uraditi posao brzo, pa spustiti sve u sleep, nego
stalno raditi „polako“.

53

Trendovi: energija kao ograničenje

• Više nije problem „da li možemo da dodamo tranzistore“, već:
koliko njih sme da bude upaljeno odjednom.

• Pojmovi:
• vršna snaga (peak power)
• TDP – Thermal Design Power
• energija po zadatku (energy per task)

• Često je bolje: uraditi posao brzo, pa spustiti sve u sleep, nego
stalno raditi „polako“.

53

Tehnike upravljanja energijom

• Clock gating – isključivanje takta neaktivnim
blokovima.

• DVFS – podešavanje napona i frekvencije u hodu.

• Power gating – potpuno isključivanje napajanja
delovima čipa.

• Race-to-halt – radi maksimalno brzo pa spava umesto
da radi stalno polovičnom brzinom.

Ne mogu svi tranzistori istovremeno da rade na maksimalnoj
frekvenciji zbog termičkih ograničenja → deo čipa je često „u
mraku“ (neaktivan).

54

Tehnike upravljanja energijom

• Clock gating – isključivanje takta neaktivnim
blokovima.

• DVFS – podešavanje napona i frekvencije u hodu.

• Power gating – potpuno isključivanje napajanja
delovima čipa.

• Race-to-halt – radi maksimalno brzo pa spava umesto
da radi stalno polovičnom brzinom.

Ne mogu svi tranzistori istovremeno da rade na maksimalnoj
frekvenciji zbog termičkih ograničenja → deo čipa je često „u
mraku“ (neaktivan).

54

Tehnike upravljanja energijom

• Clock gating – isključivanje takta neaktivnim
blokovima.

• DVFS – podešavanje napona i frekvencije u hodu.

• Power gating – potpuno isključivanje napajanja
delovima čipa.

• Race-to-halt – radi maksimalno brzo pa spava umesto
da radi stalno polovičnom brzinom.

Ne mogu svi tranzistori istovremeno da rade na maksimalnoj
frekvenciji zbog termičkih ograničenja → deo čipa je često „u
mraku“ (neaktivan).

54

Tehnike upravljanja energijom

• Clock gating – isključivanje takta neaktivnim
blokovima.

• DVFS – podešavanje napona i frekvencije u hodu.

• Power gating – potpuno isključivanje napajanja
delovima čipa.

• Race-to-halt – radi maksimalno brzo pa spava umesto
da radi stalno polovičnom brzinom.

Ne mogu svi tranzistori istovremeno da rade na maksimalnoj
frekvenciji zbog termičkih ograničenja → deo čipa je često „u
mraku“ (neaktivan).

54

Tehnike upravljanja energijom

• Clock gating – isključivanje takta neaktivnim
blokovima.

• DVFS – podešavanje napona i frekvencije u hodu.

• Power gating – potpuno isključivanje napajanja
delovima čipa.

• Race-to-halt – radi maksimalno brzo pa spava umesto
da radi stalno polovičnom brzinom.

Ne mogu svi tranzistori istovremeno da rade na maksimalnoj
frekvenciji zbog termičkih ograničenja → deo čipa je često „u
mraku“ (neaktivan).

54

Tehnike upravljanja energijom

• Clock gating – isključivanje takta neaktivnim
blokovima.

• DVFS – podešavanje napona i frekvencije u hodu.

• Power gating – potpuno isključivanje napajanja
delovima čipa.

• Race-to-halt – radi maksimalno brzo pa spava umesto
da radi stalno polovičnom brzinom.

Ne mogu svi tranzistori istovremeno da rade na maksimalnoj
frekvenciji zbog termičkih ograničenja → deo čipa je često „u
mraku“ (neaktivan).

54

SoC i domen-specifični akceleratori

• SoC (System-on-Chip):

• CPU jezgra, GPU, memorijski kontroler, mreža, I/O – sve na
jednom čipu.

• Kratke veze, manja potrošnja, bolja integracija (telefoni,
tableti, laptopovi).

• Akceleratori (TPU, NPU, Tensor Cores...):

• specijalizovani za zadatke (matrične operacije, ML, video
kodiranje),

• postižu ogromne performanse po vatu.

Dalji razvoj ne ide samo kroz „ još GHz“, već kroz paralelizam,
heterogenost i energetsku efikasnost.

55

SoC i domen-specifični akceleratori

• SoC (System-on-Chip):
• CPU jezgra, GPU, memorijski kontroler, mreža, I/O – sve na

jednom čipu.

• Kratke veze, manja potrošnja, bolja integracija (telefoni,
tableti, laptopovi).

• Akceleratori (TPU, NPU, Tensor Cores...):

• specijalizovani za zadatke (matrične operacije, ML, video
kodiranje),

• postižu ogromne performanse po vatu.

Dalji razvoj ne ide samo kroz „ još GHz“, već kroz paralelizam,
heterogenost i energetsku efikasnost.

55

SoC i domen-specifični akceleratori

• SoC (System-on-Chip):
• CPU jezgra, GPU, memorijski kontroler, mreža, I/O – sve na

jednom čipu.
• Kratke veze, manja potrošnja, bolja integracija (telefoni,

tableti, laptopovi).

• Akceleratori (TPU, NPU, Tensor Cores...):

• specijalizovani za zadatke (matrične operacije, ML, video
kodiranje),

• postižu ogromne performanse po vatu.

Dalji razvoj ne ide samo kroz „ još GHz“, već kroz paralelizam,
heterogenost i energetsku efikasnost.

55

SoC i domen-specifični akceleratori

• SoC (System-on-Chip):
• CPU jezgra, GPU, memorijski kontroler, mreža, I/O – sve na

jednom čipu.
• Kratke veze, manja potrošnja, bolja integracija (telefoni,

tableti, laptopovi).

• Akceleratori (TPU, NPU, Tensor Cores...):

• specijalizovani za zadatke (matrične operacije, ML, video
kodiranje),

• postižu ogromne performanse po vatu.

Dalji razvoj ne ide samo kroz „ još GHz“, već kroz paralelizam,
heterogenost i energetsku efikasnost.

55

SoC i domen-specifični akceleratori

• SoC (System-on-Chip):
• CPU jezgra, GPU, memorijski kontroler, mreža, I/O – sve na

jednom čipu.
• Kratke veze, manja potrošnja, bolja integracija (telefoni,

tableti, laptopovi).

• Akceleratori (TPU, NPU, Tensor Cores...):
• specijalizovani za zadatke (matrične operacije, ML, video

kodiranje),

• postižu ogromne performanse po vatu.

Dalji razvoj ne ide samo kroz „ još GHz“, već kroz paralelizam,
heterogenost i energetsku efikasnost.

55

SoC i domen-specifični akceleratori

• SoC (System-on-Chip):
• CPU jezgra, GPU, memorijski kontroler, mreža, I/O – sve na

jednom čipu.
• Kratke veze, manja potrošnja, bolja integracija (telefoni,

tableti, laptopovi).

• Akceleratori (TPU, NPU, Tensor Cores...):
• specijalizovani za zadatke (matrične operacije, ML, video

kodiranje),
• postižu ogromne performanse po vatu.

Dalji razvoj ne ide samo kroz „ još GHz“, već kroz paralelizam,
heterogenost i energetsku efikasnost.

55

SoC i domen-specifični akceleratori

• SoC (System-on-Chip):
• CPU jezgra, GPU, memorijski kontroler, mreža, I/O – sve na

jednom čipu.
• Kratke veze, manja potrošnja, bolja integracija (telefoni,

tableti, laptopovi).

• Akceleratori (TPU, NPU, Tensor Cores...):
• specijalizovani za zadatke (matrične operacije, ML, video

kodiranje),
• postižu ogromne performanse po vatu.

Dalji razvoj ne ide samo kroz „ još GHz“, već kroz paralelizam,
heterogenost i energetsku efikasnost.

55

SoC i domen-specifični akceleratori

• SoC (System-on-Chip):
• CPU jezgra, GPU, memorijski kontroler, mreža, I/O – sve na

jednom čipu.
• Kratke veze, manja potrošnja, bolja integracija (telefoni,

tableti, laptopovi).

• Akceleratori (TPU, NPU, Tensor Cores...):
• specijalizovani za zadatke (matrične operacije, ML, video

kodiranje),
• postižu ogromne performanse po vatu.

Dalji razvoj ne ide samo kroz „ još GHz“, već kroz paralelizam,
heterogenost i energetsku efikasnost.

55

	Uvod
	Procesor (CPU)
	Osnovne komponente procesora
	Cevovod i tehnike ubrzanja
	Procesori sa više jezgara i paralelizam

	Memorijska hijerarhija
	Registri i keš memorije (L1–L3)
	Glavna memorija, SSD i NVM

	Sistemska magistrala i komunikacija komponenti
	Ulazno–izlazni podsistem

