Danijela Simi¢ Filip Mari¢ Predrag Janicic¢

Milan Bankovic¢ Milena Vujosevi¢ Janici¢ Ve-

sna Marinkovi¢ Mladen Nikoli¢ Mirko Spasi¢ Sa-

na Stojanovi¢ Durdevic lvana Tanasijevi¢

UvOD U INFORMATIKU

Beograd
2025.

Autori:

dr Danijela Simi¢, docent na Matematickom fakultetu u Beogradu

dr Filip Mari¢, redovni profesor na Matematickom fakultetu u Beogradu

dr Predrag Janici¢, redovni profesor na Matematickom fakultetu u Beogradu
dr Milan Bankovi¢, docent na Matemati¢kom fakultetu u Beogradu

dr Milena Vujosevi¢ Janici¢, vandredni profesor na Matematickom fakultetu u Beo-
gradu

dr Mladen Nikoli¢, vandredni profesor na Matematickom fakultetu u Beogradu
dr Mirko Spasi¢, docent na Matemati€kom fakultetu u Beogradu

dr Sana Stojanovi¢ Burdevié¢, docent na Matematickom fakultetu u Beogradu
dr Ivana Tanasijevi¢, docent na Matematickom fakultetu u Beogradu

UVOD U INFORMATIKU

Izdavaé: Matematicki fakultet Univerziteta u Beogradu
Studentski trg 16, 11000 Beograd

Recenzenti:
77
7

Obrada teksta i ilustracije: autori (osim za slike nabrojane na kraju knjige)

Dizajn korica: autori

(©2025. Danijela Simi¢, Filip Mari¢, Predrag Janici¢, Milan Bankovi¢, Milena Vu-
joSevi¢ Janici¢, Mladen Nikoli¢, Mirko Spasi¢, Sana Stojanovi¢ Durdevi¢ i lvana
Tanasijevi¢

Ovo delo zasticeno je licencom Creative Commons CC BY-NC-ND 4.0 (Attribution-
NonCommercial-NoDerivatives 4.0 International License). Detalji licence mogu se vide-
ti na veb-adresi http://creativecommons.org/licenses/by-nc-nd/4.0/. Dozvoljeno
je umnozavanje, distribucija i javno saopstavanje dela, pod uslovom da se navedu ime-
na autora. Upotreba dela u komercijalne svrhe nije dozvoljena. Prerada, preoblikovanje i
upotreba dela u sklopu nekog drugog nije dozvoljena.

o0ce

http://creativecommons.org/licenses/by-nc-nd/4.0/

Sadrzaj

Sadrzaj 3
1 Hardver savremenih racunara 7
1.1 Procesor (CPU) 8
1.2 Memorijska hijerarhija Lo 16
1.3 Sistemska magistrala i komunikacija komponenti 23
1.4 Ulazno—-izlazni podsistem 26
1.5 Integracija hardverskih podsistema 28
1.6 Trendovi u savremenim arhitekturama 30

Predgovor

Ovo je materijal za predmet Uvod u informatiku na prvoj godini smera Infor-
matika na Matematic¢kom fakultetu Univerziteta u Beogradu) Nadamo da izbor
sadrzaja i nacin prezentovanja mogu da budu zanimljivi ne samo studentima, ve¢
i svima drugima koje interesuje ova oblast racunarstva.

Bi¢emo zahvalni ¢itaocima na svim ispravkama, sugestijama i komentarima koje
nam posalju.

b

¥ F% K K K K ¥ K K K %

Kratka istorija informatike i informaciono-komunikacionih tehnologija — Filip
Mari¢ i Predrag Janici¢

Hardver i softver - Filip Mari¢, Predrag Janici¢ i Danijela Simi¢
Digitalizacija - Filip Mari¢, Predrag Janici¢ i Danijela Simi¢
Algoritmi i izraCunljivost - Predrag Janici¢

Sistemski softver - Milan Bankovi¢

Racunarske mreze - Mirko Spasi¢

Programski jezici i prevodioci - Milena Vujosevi¢ Janici¢
Proces razvoja softvera - Danijela Simi¢

Baze podataka - lvana Tanasijevi¢

Matematika i informatika - Filip Mari¢

Vestacka inteligencija - Mladen Nikoli¢ i Predrag Janici¢

Racunarska grafika - Vesna Marinkovi¢

5

Sadrzaj 6

% Racunari i drustvo - Sana Stojanovi¢ Durdevi¢

Danijela Simi¢, Filip Marié, Predrag Janici¢, Milan Bankovi¢, Milena Vujosevié¢
Janic¢i¢, Mladen Nikoli¢, Mirko Spasi¢, Sana Stojanovi¢ Purdevi¢ i lvana
Tanasijevi¢

Beograd, mart 2024.

GLAVA

Hardver savremenih racunara

Hardver €ine opipljive, fizicke komponente racunara. lako je u osnovi savremenih
racunarskih sistema i dalje Fon Nojmanova masina (procesor i memorija), oni se
danas ne mogu zamisliti bez niza hardverskih komponenti koje olaksavaju rad sa
racunarom.

lako na prvi pogled deluje da se jedan uobicajeni stoni raCunar sastoji od kucista,
monitora, tastature i misa, ova podela je veoma povrina, podlozna promenama
(ve¢ kod prenosnih racunara, stvari izgledaju znatno drugacije) i nikako ne ilustruje
koncepte bitne za funkcionisanje racunara. Mnogo znacajnija je podela na osnovu
koje raCunar Cine:

%% procesor tj. centralna procesorska jedinica (engl. Central Processing Unit,
CPU), koja obraduje podatke;

% glavna memorija (engl. main memory), u kojoj se istovremeno €uvaju i podaci
koji se obraduju i trenutno pokrenuti programi (takode zapisani binarno, u
obliku podataka);

% razliciti periferijski uredaji ili ulazno-izlazne jedinice (engl. peripherals, input-
output devices, 10 devices), kao 5to su mievi, tastature, ekrani, stampadi,
diskovi, a koje sluze za komunikaciju korisnika sa sistemom i za trajno skla-
distenje podataka i programa.

Sve nabrojane komponente medusobno su povezane i podaci se tokom rada
raunara prenose od jedne do druge. Veza izmedu komponenti uspostavlja se har-
dverskim sklopovima koji se nazivaju magistrale (engl. bus). Magistrala obuhvata
provodnike koji povezuju uredaje, ali i ¢ipove koji kontrolisu protok podataka. Svi
periferijski uredaji se sa memorijom, procesorom i magistralama povezuju hardver-
skim sklopovima koji se nazivaju kontrolori. Mati¢na ploca (engl. motherboard) je

7

Danijela

Danijela

Danijela

Danijela

1.1. Procesor (CPU) 8

Stampana ploca na koju se priklju€uju procesor, memorijski Cipovi i svi periferijski
uredaji. Na njoj se nalaze ipovi magistrale, a danas i mnogi kontrolori periferijskih
uredaja.

1.1 Procesor (CPU)

1.1.1 Osnovne komponente procesora

Procesor predstavlja centralnu komponentu svakog racunarskog sistema zasno-
vanog na Fon Nojmanovom modelu arhitekture. Njegova osnovna funkcija je da
upravlja tokom instrukcija i izvrSava operacije nad podacima, Cineéi time proces
obrade informacija mogué¢im. U savremenim racunarima svi osnovni delovi proce-
sora objedinjeni su u jedinstvenu fizicku celinu — centralnu procesorsku jedinicu
(engl. Central Processing Unit, CPU), koja je implementirana kao mikroprocesor
na jednom integrisanom kolu.

Procesor se sastoji od tri osnovna podsistema:

Y

% aritmeticko-logicke jedinice (engl. Arithmetic Logic Unit, ALU), zaduzene za
izvodenje aritmetickih (sabiranje, oduzimanje, mnozenje, deljenje) i logickih
operacija (konjunkcija, disjunkcija, negacija, poredenje);

% kontrolne jedinice (engl. Control Unit, CU), koja interpretira i dekodira in-
strukcije, koordinira izvrsavanje i upravlja prenosom podataka izmedu delova
procesora i memorije;

¢ skupa registara — malih, vrlo brzih memorijskih ¢elija koje privremeno Cuvaju
operande, adrese i medurezultate obrade. Obicno fiksirane Sirine (8 bitova,
16 bitova, 32 bita, 64 bita).

U najranijim implementacijama komunikacija izmedu ALU i memorije obavljala
se preko posebnog registra nazvanog akumulator. Savremeni procesori, medutim,
raspolazu ve¢im brojem opstih i specijalizovanih registara, ¢ime se znacajno sma-
njuje broj pristupa glavnoj memoriji i ubrzava obrada podataka.

Kontrolna jedinica procesora izvrsava tzv. ciklus instrukcije koji se sastoji iz tri
osnovne faze: dohvatanja (engl. fetch), dekodiranja (engl. decode) i izvrsavanja
(engl. execute). Tokom svake faze procesor €ita instrukciju iz memorije, odreduje
operaciju koju treba obaviti i sprovodi odgovarajucu aritmeticku ili logicku akciju
nad podacima u registrima.

Primer 1.1. Ciklus instrukcije

Neka je u registru R1 vrednost 5, a u registru R2 vrednost 3.

Instrukcija ADD R1, R2 znali da se sabira sadrzaj registra R2 sa R1, a
rezultat se ponovo upisuje u R1.

Kontrolna jedinica redom dohvata, dekodira i prosleduje ALU instrukciju,
koja izvrsava sabiranje i aZurira sadrzaj registra R1 na vrednost 8.

Danijela

Danijela

Danijela

Danijela

Danijela

9 1. Hardver savremenih racunara

Brzina rada procesora izrazava se najéesce kroz broj instrukcija koje moze izvr-
Siti u sekundi, oznacen kao MIPS (engl. Million Instructions Per Second), odnosno
u broju operacija u pokretnom zarezu po sekundi, FLOPS (engl. Floating Point
Operations per Second). Moderni procesori ostvaruju performanse reda velicine
desetina gigaflopsa (109 operacija u sekundi), dok se u vrhunskim serverskim i
grafickim &ipovima dostizu i teraflopi (10'? operacija u sekundi).

Dodatni pokazatelji arhitektonske mo¢i procesora su broj jezgara (engl. cores),
Sirina reci (32 ili 64 bita) i radni takt (engl. clock rate), koji se izrazava u gigaherci-
ma (GHz). Visi takt omogucava brze izvrsavanje instrukcija, ali povec¢ava potrosnju
energije i disipaciju toplote, zbog €ega savremeni procesori teze kompromisu izmedu
performansi i energetske efikasnosti.

CPU
N —————— 2.
| |
| Kontrolna Aritmeticko |
| T el e g s !
| jedinica logicka jedinica |
| |
| * * |
: | registri | :
L ____ J
6 magistrala
Memorija Ulazn.l- Izlazn.|-
uredaji uredaji

Slika 1.1: Shema racunara Fon Nojmanove arhitekture

1.1.2 Cevovod i tehnike ubrzanja

Cevovod (engl. pipelining) predstavlja klju¢nu tehniku ubrzanja savremenih pro-
cesora, zasnovanu na preklapanju faza obrade instrukcija. Umesto da svaka
instrukcija Ceka zavrsetak prethodne, razliCite faze vise instrukcija izvrSavaju se
istovremeno, ¢ime se znaCajno povecava protok (engl. throughput) sistema.

Danijela

1.1. Procesor (CPU) 10

Primer 1.2. Jednostavni cevovod sa pet faza

Savremeni RISC procesori, poput RISC-V ili ARM, Cesto koriste klasican
petostepeni cevovod:

% IF (Instruction Fetch) — citanje instrukcije iz memorije;
% ID (Instruction Decode) — dekodiranje i ¢itanje registara;

%% EX (Execute) — aritmeticko-logicke operacije ili izracunavanje adre-
se;

%

MEM (Memory) — pristup podacima u memoriji;

%

WB (Write-Back) — upis rezultata u registar.

Dok jedna instrukcija ulazi u fazu dekodiranja, druga se izvrsava, treca
pristupa memoriji, a Cetvrta upisuje rezultat. Time se, idealno, ostvaruje
ubrzanje priblizno broju faza cevovoda.

Cevovod povecava broj izvrsenih instrukcija u jedinici vremena, ali ne smanjuje
vreme izvriavanja pojedinacne instrukcije. Stavise, dodatna kontrolna logika i re-
gistri izmedu faza unose mali vremenski trosak (pipeline overhead). Zbog toga se
u praksi ostvaruje ubrzanje nesto manje od teorijskog maksimuma.

Efikasnost cevovoda zavisi od ravnoteze duzina faza — ukupno vreme ciklusa
odredeno je najsporijom fazom. Ako je neka faza znatno duza, ona postaje
usko grlo performansi. Cilj projektanta je da sve faze traju priblizno isto.

1.1.2.1 Vrste prepreka u cevovodu

Idealno izvrsavanje je naruseno pojavom hazarda, situacija koje onemoguca-
vaju da sledec¢a instrukcija zapocne svoju fazu u predvidenom ciklusu. U praksi se
izdvajaju tri osnovne klase:

%

Strukturni hazard - nastaje kada hardver nema dovoljan broj resursa za
istovremeno izvrSavanje svih faza (npr. zajedni¢ka memorija za instrukcije i
podatke).

*¢ Podatkovni hazard — javlja se kada jedna instrukcija zavisi od rezultata pret-
hodne (read-after-write problem). Resenja ukljuCuju prosledivanje rezultata
(engl. forwarding) i mehanizme zadrske (interlocks).

Kontrolni hazard - posledica grananja: dok procesor ne zna ishod skoka, ne
zna ni koju instrukciju slede¢u da ucita. Savremeni procesori ublazavaju ovaj
problem predikcijom grananja i spekulativnim izvrsavanjem.

11 1. Hardver savremenih racunara

U idealnim uslovima cevovod moze ubrzati izvrSavanje do broja svojih faza, ali
svaka pojava hazard-a umanjuje taj efekat. Zbog toga su upravo mehanizmi
detekcije i ublazavanja hazard-a osnov savremenog dizajna procesora.

Kada su faze pravilno balansirane, a hazardi minimalizovani, cevovod omogu-
Cava procesoru da istovremeno izvrsava vise instrukcija.

1.1.2.2 Paralelizam na nivou instrukcija (ILP)

Paralelizam na nivou instrukcija (engl. Instruction-Level Parallelism, ILP)
predstavlja sposobnost procesora da izvrsava vise nezavisnih instrukcija istovreme-
no, iskoris¢avajuéi preklapanje u cevovodu. Dok cevovod povecava protok obrade,
ILP meri koliko instrukcija moze zaista biti izvrSeno paralelno bez narusavanja
ispravnosti programa.

Sustina ILP-a lezi u pronalazenju instrukcija koje nemaju medusobne zavisnosti.
Kada se dve instrukcije ne oslanjaju na iste podatke niti kontrolisu jedna drugu,
procesor ih moze istovremeno dekodirati i izvrsavati. Ogranicavaju¢i faktori su
podatkovne, imenske i kontrolne zavisnosti, koje odreduju redosled instrukcija i
sprecavaju prekomerno preklapanje. Ako procesor ne prepozna zavisnosti pravilno,
moze doc¢i do pogresnih rezultata ili izuzetaka tokom izvrsavanja.

% Podatkovna zavisnost (RAW) — instrukcija koristi rezultat prethod-
ne, pa mora Cekati da se on izracuna.

% Imenska zavisnost (WAW, WAR) — dve instrukcije koriste isto ime
registra ili memorijsku lokaciju, iako se podaci ne prenose.

Kontrolna zavisnost — odreduje redosled izvrsavanja u prisustvu gra-
nanja.

Kompajleri i procesori zajedno nastoje da povecaju ILP. Savremene arhitekture
koriste dinamicke tehnike otkrivanja paralelizma u samom hardveru (spekulacija,
predikcija grananja), dok kompajleri primenjuju staticke transformacije tokom pre-
vodenja koda. Dve osnovne kompajlerske metode su:

** Promena redosleda nezavisnih instrukcija (eng. instruction reodering),

2

% Prosirivanje tela petlje (eng. loop unrolling) — kako bi se smanjio broj gra-
nanja i povecao broj nezavisnih instrukcija koje se mogu izvrsavati paralelno.

1.1. Procesor (CPU) 12

Primer 1.3. Primer transformacije petlje

Petlja koja sabira dva vektora:

\texttt{for (i = 0; i < n; i++) x[i] = x[i] + y[il;}

mozZe se ,odmotati” (engl. unroll) tako da se u jednoj iteraciji obrade, re-
cimo, Cetiri elementa istovremeno. Time se smanjuje ucestalost grananja i
povecava broj instrukcija koje se paralelno izvrsavaju.

U praksi, ILP je ogranicen zavisnostima u programu i brojem resursa proce-
sora. Sto je vise nezavisnih instrukcija u osnovnom bloku koda, to je veéi stepen
paralelizma koji arhitektura moze iskoristiti.

1.1.2.3 Predikcija skokova

Grananja uvode kontrolne hazarde: da bi se ocuvale kontrolne zavisnosti, cevo-
vod mora da ¢eka ishod skoka, §to stvara zastoje i povecava CPI. Loop unrolling
smanjuje broj grananja, ali klju¢no je i predvidanje (engl. branch prediction), ko-
jim procesor pogada ishod i uslovno izvrsava instrukcije duz predvidene putanje na
osnovu pretpostavki. Ukoliko se ispostavi da je predvidanje bilo pogresno, efekti
predvidanja se ponistavaju, a cevovod se prazni.

Osnovni prediktor. Najjednostavniji oblik predikcije je 2-bitni zasi€¢ujuéi bro-
jac po svakoj grani (tzv. (0,2) prediktor), koji pamti poslednja dva ishoda i prema
njima odlu€uje da li ¢e naredni skok biti ,,uzet" ili ,,neuzet”. Ova Sema koristi samo
lokalne informacije o ponasanju konkretne grane.

Korelacioni prediktori. Tacnost se moze poveéati ako predvidanje jedne grane
zavisi i od globalne istorije prethodnih grananja. U opstem slucaju, (m, n)-prediktor
koristi m bita globalne istorije da odabere jedan od 2™ prediktora sa n-bitnim
broja¢ima. Tipi¢an primer je gshare prediktor: indeks se dobija XOR kombinacijom
niskih bitova adrese i globalne istorije, ¢ime se dobija visoka taénost uz minimalan
hardverski trosak.

Turnirski (hibridni) prediktori. Savremeniji turnirski prediktori kombinuju lo-
kalni i globalni pristup. Selektor, takode zasnovan na 2-bitnom brojacu, adaptivno
bira ,bolji" prediktor za svaku granu, uceéi iz prethodnih uspeha i neuspeha. Ova
strategija obezbeduje stabilnu tanost pri razlicitim obrascima grananja.

Oznaceni hibridi (TAGE). Najtacniji danasnji prediktori su TAGE (engl. TAg-
ged GEometric) prediktori, koji koriste vise tabela indeksiranih istorijama razliite
duzine. Svaka tabela sadrzi tag koji potvrduje poklapanje obrasca i dodatno polje
koris¢enosti koje eliminiSe zastarele unose. Na taj nacin se postize ve¢a tacnost bez
eksponencijalnog rasta memorijskih zahteva.

13 1. Hardver savremenih racunara

Doprinos kontrolnih hazarda ukupnom prose¢nom broju ciklusa po instruk-
ciji (eng. Cycles Per Instruction, CPI) moze se aproksimirati izrazom:

CPI=CPligear + Pmispredict - Penaltyprancn

gde je Puispredict Verovatnoca pogresne predikcije, a Penaltypranch broj
ciklusa izgubljenih po promasaju. Kod dubokih cevovoda ova vrednost moze
dosti¢i i desetine ciklusa.

Dakle, formula kaze: Stvarni CPI raste onoliko koliko Eesto procesor pogresi u
predikciji skoka i koliko ga svaka pogresna odluka kosta u ciklusima.

Pri pokretanju programa, prediktor grananja obi¢no se inicijalizuje jednostavnim
pravilom, dok tokom rada procesor ,,nauci” tipi¢ne obrasce programa.

Savremene tehnike ubrzanja: viSestruko izdavanje i dinami¢ko raspore-
divanje. Savremeni procesori ne ogranicavaju se na obradu jedne instrukcije po
ciklusu, ve¢ primenjuju tzv. visestruko izdavanje instrukcija (eng. multiple issue). U
takvoj arhitekturi, vise nezavisnih instrukcija moze se dekodirati i zapoceti u istom
taktu, ¢ime se povecava propusnost cevovoda i efikasnije koriste funkcionalne je-
dinice. Da bi se ovo ostvarilo bez ruénog planiranja od strane kompajlera, procesor
koristi dinamicko rasporedivanje instrukcija (eng. dynamic scheduling), koje u toku
izvrSavanja analizira zavisnosti izmedu instrukcija i, kad god je moguée, izvrsava ih
van redosleda definisanog programom. Time se izbegavaju zastoji, a paralelizam se
koristi u meri koju dopusta konkretni tok podataka. U kombinaciji sa predikcijom
skokova i promena imena registara, ove tehnike omoguéavaju modernim superska-
larnim procesorima da u jednom ciklusu zapoénu i do desetak mikro-operacija,
¢ime se realni CPI priblizava idealnom, a cevovod odrzava stalno popunjenim.

1.1.3 Procesori sa viSe jezgara i paralelizam

Kako su fizicka ogranienja (potrosnja energije, disipacija toplote i slozenost

pronalazenja dodatnog instruction-level paralelizma) usporila dalji rast performansi
jednog jezgra, razvoj mikroprocesora pre3ao je u novu fazu: paralelizam na nivou
niti (Thread-Level Parallelism, TLP). Umesto povecanja brzine pojedinacne niti,
savremeni procesori ostvaruju ve¢i ukupni u€inak tako §to istovremeno izvrSavaju
vise niti programa — bilo unutar istog procesa, bilo izmedu vise procesa.
Za razliku od ILP-a, koji pronalazi nezavisne instrukcije u okviru jedne programske
niti, TLP koristi viSe nezavisnih tokova izvrSavanja. Svaka nit poseduje svoj pro-
gramski brojac i registre, ali moze deliti memorijski prostor sa drugim nitima.
Time se omogucava paralelno izvodenje zadataka, bilo da poticu iz istog progra-
ma (npr. delovi petlje), bilo iz razli¢itih aplikacija. Operativni sistem i kompajler
zajedno identifikuju i planiraju niti, dok hardver obezbeduje njihovo istovremeno
izvrsavanje na razlicitim jezgrima.

Danijela

Danijela

Danijela

Danijela

Danijela

1.1. Procesor (CPU) 14

ILP povec¢ava brzinu izvrSavanja jedne niti otkrivanjem nezavisnih instrukci-
ja, dok TLP povec¢ava propusnost sistema izvodenjem vise niti istovremeno.
ILP zahteva kompleksne tehnike predvidanja i dinamickog rasporedivanja,
dok TLP koristi vise fizickih jezgara i niti da ostvari slican efekat na visem
nivou apstrakcije.

Savremeni procesori sa vise jezgara (multicore) kombinuju ILP i TLP: svako jezgro
interno koristi cevovod i visestruko izdavanje instrukcija, dok vise jezgara zajedno
omogucava paralelno izvrsavanje niti. Vecina danasnjih procesora (Intel, AMD,
ARM) su procesori sa deljenom memorijom (eng. shared-memory multiprocessori)
— viSe jezgara deli zajedni€ku fizi€ku memoriju i pristupa joj kroz hijerarhiju keseva
(privatni L1/L2 i deljeni L3).

Dva osnovna pristupa su:

% Simetricni (SMP) — sva jezgra imaju jednak pristup memoriji, pa je vreme
pristupa uniformno.

% Distribuirani (NUMA) — svako jezgro ima lokalnu memoriju sa brzim pri-
stupom, dok pristup memoriji drugih jezgara traje duze.

U realnim sistemima, komunikacija medu jezgrima i sinhronizacija niti zahte-
vaju posebne mehanizme (npr. koherentnost kes memorije (eng. cache coherence)
i konzistentnost memorije (eng. memory consistency)). lako arhitekture sa vise
jezgara omogucavaju znatno vece performanse i energetsku efikasnost, ukupno
ubrzanje ograniceno je zakonom Amdala — cak i mali deo koda koji se ne moze
paralelizovati moze postati glavno usko grlo.

Procesori kao sto su Intel Core, AMD Ryzen i ARM big.LITTLE ar-
hitekture kombinuju visestruko izdavanje instrukcija, vise cevovoda i vise
jezgara, uz podrsku za vise niti po jezgru (Simultaneous Multithreading —
SMT). Time se na nivou Cipa ostvaruje paralelizam od nekoliko desetina
nezavisnih niti koje dele zajednicku memoriju i komunikacione magistrale.

1.1.4 Integracija grafi¢kih procesora i akceleratori

Savremeni procesorski sistemi sve ¢eS¢e kombinuju klasi¢ne procesore opste
namene (CPU) sa specijalizovanim jedinicama za paralelno racunanje, ¢ineci tzv.
heterogenu arhitekturu. Najpoznatiji predstavnici ove klase su graficki procesori
(engl. Graphics Processing Unit, GPU) i akceleratori za neuronske mreze (TPU,
NPU, DNN). lako su prvobitno bili namenjeni iskljuivo za graficke operacije, kao
Sto su renderovanje 3D scena i obrada piksela, njihova visoko paralelizovana arhi-
tektura omogucava efikasno izvrsavanje razli¢itih proracuna nad velikim blokovima

Danijela

15 1. Hardver savremenih racunara

podataka i zato su se pokazali izuzetno efikasnim i u nau¢nim, multimedijalnim
i aplikacijama gde se koristi masinsko ucenje, gde dominira paralelizam na nivou
podataka (eng. data-level parallelism, DLP).

Za razliku od CPU-a koji istovremeno izvrsava mali broj kompleksnih niti, GPU
poseduje stotine ili hiljade jednostavnih jezgara koja istovremeno primenjuju istu
instrukciju nad razli¢itim podacima — model poznat kao SIMD (Single Instruction,
Multiple Data) ili njegova varijanta SIMT (Single Instruction, Multiple Threads).
Svaka grupa niti, izvrsava se sinhrono na skupu paralelnih aritmetickih jedinica. Na
taj nacin GPU ostvaruje izuzetno visok stepen propusnosti (engl. throughput), sto
ga ¢ini pogodnim za racunanja nad velikim nizovima podataka.

Programiranje GPU-a zasniva se na modelima kao 5to su CUDA (NVIDIA) i
OpenCL (otvoreni standard). U njima programer eksplicitno definie broj niti i nji-
hovu organizaciju u blokove, dok hardver automatski upravlja njihovim rasporedom
i sinhronizacijom. Da bi GPU postigao punu efikasnost, niti u okviru jednog bloka
treba da pristupaju povezanim delovima memorije tj. niti u okviru jednog bloka ob-
raduju uzastopne (susedne) elemente, ¢ime se omogucava efikasno objedinjavanje
memorijskih zahteva (engl. memory coalescing).

U savremenim racunarima CPU i GPU su povezani interfejsima velike propusno-
sti (npr. NVLink, PCle) i mogu deliti jedinstveni adresni prostor zahvaljujuci tzv.
ujedinjenoj memoriji (engl. unified memory). Ovaj pristup omogucava transparen-
tan prelazak podataka izmedu CPU i GPU memorije, olaksavajuéi programiranje i
smanjujuci potrebu za ruénim kopiranjem.

Razvoj vestacke inteligencije i dubokih neuronskih mreza doveo je do pojave
specijalizovanih procesora namenjenih obradi modela masinskog ucenja. Ovi pro-
cesori, poznati kao akceleratori za duboke neuronske mreze (engl. Deep Neural
Network Accelerators, DNN accelerators), projektovani su tako da efikasno izvrsa-
vaju veliki broj jednostavnih operacija nad matricama — osnovni oblik racunanja u
neuronskim mrezama.

Tipicne operacije koje se ponavljaju u neuronskim mrezama su mnoze-
nje matrica, konvolucije i nelinearne funkcije aktivacije (na primer, ReLU,
sigmoid, tanh). Zbog toga akceleratori poseduju veliki broj jednostavnih
aritmetickih jedinica (ALU) i brze lokalne memorije koje smanjuju potrebu
za pristupom spoljasnjoj memoriji.

Najpoznatiji predstavnik ovih specijalizovanih procesora je Google Tensor Pro-
cessing Unit (TPU). TPU je dizajniran kao domen-specifi¢an akcelerator (Domain-
Specific Architecture, DSA) za fazu inferencije — odnosno koris¢enje ve¢ istreniranih
neuronskih mreza. Srz TPU-a &ini sistolicki niz (engl. systolic array) od 256 x 256
8-bitnih aritmetickih jedinica koje paralelno izvrSavaju operacije mnozenja i sabira-
nja.

Ovakav dizajn omogucava postizanje izuzetne propusnosti i energetske efika-
snosti, jer se podaci kre¢u kroz mrezu aritmetickih jedinica bez stalnog ¢itanja i

Danijela

Danijela

Danijela

1.2. Memorijska hijerarhija 16

pisanja iz spoljasnje memorije. TPU poseduje i posebne memorijske blokove — Uni-
fied Buffer i Weight Memory — koji omogucavaju da se aktivacije i tezine modela
nalaze sto blize aritmeti¢kim jedinicama.

Zahvaljujuéi ograni¢enom domenu primene i jednostavhom modelu izvr3a-
vanja, TPU ostvaruje vise reda veli¢ine bolji odnos performansi i potrosnje
energije u poredenju sa opstim procesorima (CPU) i grafickim procesorima
(GPU) pri izvodenju operacija potrebnih za neuronske mreze.

Pored TPU-a, sliéne akceleratore razvijaju i druge kompanije (npr. Intel Ner-
vana, NVIDIA Tensor Core, Apple Neural Engine), a svi slede sliénu filozofiju:
maksimalna paralelizacija uz minimalne troskove prenosa podataka. Takvi proce-
sori postaju osnovni element savremenih sistema koji kombinuju CPU, GPU i DNN
akceleratore u zajednickom okviru za heterogeno racunanje.

1.2 Memorijska hijerarhija

Druga centralna komponenta Fon Nojmanove arhitekture je glavna memorija,
u kojoj se Cuvaju programi i podaci potrebni procesoru za izvrSavanje instrukcija.
Sadrzaj glavne memorije organizovan je kao linearni niz memorijskih lokacija, od-
nosno registara (najces¢e bajtova), od kojih svaka ima svoju jedinstvenu adresu.
Posto se pristup moze vrsiti proizvoljnim redosledom, ova memorija se naziva me-
morija sa slobodnim pristupom (engl. Random Access Memory, RAM). Osnovni
parametri memorija su kapacitet, vreme pristupa i protok.

U savremenim sistemima, razlika u brzini izmedu procesora i glavne memorije
postala je toliko izrazena da direktan pristup vise nije mogu¢ bez ozbiljnog uspore-
nja. Da bi se smanjio ovaj raskorak, uspostavlja se slozena memorijska hijerarhija
koja povezuje memorije razli¢itih brzina, cena i kapaciteta. Na vrhu hijerarhije na-
laze se registri procesora i kes memorije (engl. cache), dok su pri dnu sporije, ali
kapacitetnije memorije — glavna memorija, SSD uredaji i druge trajne memorije.
Procesor direktno komunicira samo s najbrzim slojem, dok se podaci iz sporijih
nivoa ucitavaju prema potrebi.

Kako se udaljavamo od procesora, cena memorije po bajtu se smanjuje, ka-
pacitet raste, ali vreme pristupa postaje duze. Hijerarhija memorija balansira
ove suprotne zahteve tako da sistem, u proseku, deluje gotovo jednako brzo
kao najbrza memorija u lancu.

17 1. Hardver savremenih racunara

SAS.
g g CPU
o] istri o
< g registri S
als 3
2|3 Ke$ memorija B
x =.
gl]
= | 3
M E3 RAM
s12
[
ROM/BIOS
3
]2, . . &
< | USB diskovi Q
[Y A
=4 BY o
315 hard diskovi 3.
(2 [
5|2
o x
[%) O
|8
N e CD, DVD, Blu-ray, magnetne trake
Sy
[(ad

Slika 1.2: Pregled memorijske hijerarhije

Brzina procesora poslednjih decenija rasla je mnogo brze od brzine glavne
memorije. Ova sve vecéa razlika dovodi do situacije u kojoj procesor vecinu
vremena provodi Cekajuéi podatke iz memorije — Sto se naziva ,zid me-
morije”. Kes memorije, predmemoriranje i preuredivanje pristupa podacima
nastoje da taj zid ublaze, ali ga ne mogu potpuno eliminisati.

Ova hijerarhijska organizacija €ini osnovu svakog modernog racunarskog sistema
i omogucava efikasno balansiranje izmedu brzine, cene i energetskih zahteva. U
narednim odeljcima detaljnije se razmatraju kljuéni nivoi hijerarhije: registri, kes
memorije i glavna memorija.

1.2.1 Registri i ke§ memorije (L1-L3)

Najvisi nivo memorijske hijerarhije Cine registri — mala, izuzetno brza memorija
ugradena direktno u procesorska jezgra. Predstavljaju najbrzu memoriju jer se sve
aritmeticke i logicke operacije izvode upravo nad podacima koji se nalaze u njima.
Tipic¢no ih ima od desetina do nekoliko stotina, sa latencijom od jednog takta.

1.2. Memorijska hijerarhija 18

Latencija je vreme od trenutka kada procesor zatrazi podatak/instrukciju
do trenutka kada je zaista dobije; meri se u taktovima (eng. clock cycles)
ili nanosekundama. Posto ALU ne moze da nastavi bez operanada, niska
latencija najblizih nivoa memorije je presudna za performanse.

Odmabh ispod registara u memorijskoj hijerarhiji nalazi se kes memorija (engl. cac-
he), organizovana u vise nivoa: L1, L2 i L3, koji €uvaju kopije najcesce koris¢enih
podataka i instrukcija. Kes je mala koli¢ina brze memorije (nekoliko hiljada puta
manjeg kapaciteta od glavne memorije; obi¢no nekoliko megabajta) koja se po-
stavlja izmedu procesora i glavne memorije u cilju ubrzanja rada racunara. Cilj ke
memorije je da sakrije razliku u brzini izmedu procesora i glavne memorije (RAM-a),
¢ija latencija moze biti i stotine puta veca. Tipi¢ne vrednosti latencije su:

sk L1: 2—4 ciklusa,

*k L2: 10-20 ciklusa,

sk L3: 30-50 ciklusa,

% Glavna memorija: 100-300 ciklusa.

Primer 1.4. Poredenje veli¢ine i latencije

Nivo Tipicna velicina Latencija (ciklusi) Primer arhitekture
L1 (instrukcioni/podatkovni) 32-64 KB 3-4 ARM Cortex-A53, Intel
L2 (privatni) 256 KB-1 MB 10-15 ARM Cortex-A53, Intel
L3 (deljeni) 8-32 MB 30-50 Intel Core i7

Registri i ke memorije u procesoru najces¢e se izraduju u SRAM tehnolo-
giji (eng. Static Random Access Memory). Svaka celija SRAM memorije sastoji
se od Sest tranzistora, bez kondenzatora. Glavne prednosti su veoma brz pristup
(reda pikosekundi do nanosekundi), nema potrebe za osvezavanjem (za razliku od
DRAM-a), pouzdan i stabilan signal. A glavni nedostaci su mnogo veéa povrsina
po bitu (zato Sto ima 6 tranzistora umesto 1 kao kod DRAM memorije), samim
tim je skuplja i energetski zahtevnija po bitu.

Kes memorija je organizovana u blokove (ili linije) tipi€ne veliCine 32-128 baj-
tova. Svaki blok sadrzi podatke koji se Cesto koriste zajedno, sto omogucava isko-
ris¢avanje prostorne lokalnosti. Kada se blok ucita, on se smesta u odgovarajuéu
kes liniju. Adresiranje u kes memoriji zasniva se na podeli adrese na tri polja: [tag
| index | offset]. Polje index odreduje u koji deo kesa moze biti smesten
trazeni blok, dok tag sluzi za proveru da li se upravo taj blok nalazi u tom delu
kesa. Polje offset oznacava ta¢nu poziciju bajta ili re¢i unutar bloka.

Na osnovu toga razlikujemo:

* direktno mapirani kes — svaka adresa ima jedno moguce mesto,

19 1. Hardver savremenih racunara

n-asocijativni kes — blok moze biti u bilo kom od n mesta unutar jednog
dela kesa,

%

potpuno asocijativni kes — blok moze biti bilo gde u kesu.

Pre pristupa glavnoj memoriji procesor uvek prvo pristupa kesu. Ako trazeni
podatak tamo postoji, u pitanju je tzv. pogodak kesa (engl. cache hit) i podatak
se dostavlja procesoru. Ako se podatak ne nalazi u kesu, u pitanju je tzv. promasaj
kesa (engl. cache miss) i podatak se iz glavne memorije prenosi u ke$ zajedno sa
odredenim brojem podataka koji za njim slede (glavni faktor brzine glavne memorije
je njeno kasnjenje i prakti¢no je svejedno da li se prenosi jedan ili vise podataka
jer je vreme prenosa malog broja bajtova mnogo manje od vremena kasnjenja).
Motivacija ovog pristupa je u tome 5to programi Cesto pravilno pristupaju podacima
(obi¢no redom kojim su podaci smesteni u memoriji), pa je velika verovatno¢a da
e se naredni trazeni podaci i instrukcije na¢i u kes-memoriji.

Kada dode do promasaja (miss), kes mora odluditi koji blok ée biti zamenjen
novim podacima iz nizeg nivoa memorije. Ovaj izbor sledi odredenu politiku za-
mene blokova. Najéesce se koristi politika najduze nekoris¢enog bloka (engl. Least
Recently Used — LRU), koja pretpostavlja da ¢e blok koji je najduze bio neaktivan
verovatno i ubuduce biti najmanje potreban. Zbog hardverske slozenosti potpune
implementacije LRU pristupa, u praksi se ¢esto primenjuju priblizne varijante, po-
put pseudo-LRU algoritma, koji donosi gotovo isti efekat uz manji broj registara i
logickih operacija.

Upis podataka u kes takode moze slediti razlicite politike upisa. Naime, kes
nije posebna memorija, ve¢ brza kopija dela glavne memorije (RAM), &iji je za-
datak da ubrza pristup Cesto koris¢enim podacima; zato je neophodno odrzavati
konzistentnost izmedu kesa i glavne memorije, kako bi svi delovi sistema videli is-
te vrednosti podataka. Procesor stalno €ita i upisuje podatke. Kada upisuje (npr.
menja neku promenljivu), ta promena prvo ide u kes, jer je to najbrza memorija i
nalazi se odmah uz procesor. Ali, te izmene tada jo$ nisu zapisane u glavnu me-
moriju (RAM), koja je mnogo sporija. Postavlja se pitanje: kada i kako azurirati
glavnu memoriju da bi svi nivoi imali isti sadrzaj?

%% pisanje-prolazom (engl. write-through) — svaka promena u kesu istovremeno
se upisuje i u nizi nivo memorije. Ovaj pristup pojednostavljuje odrzavanje
konzistentnosti podataka, ali pove¢ava broj pristupa memoriji.

% pisanje-na-izbacivanje (engl. write-back) — izmene se najpre upisuju samo
u kes, a zatim se, prilikom izbacivanja bloka iz kesa, sadrzaj azurira u nizem
nivou. Takvi blokovi oznaavaju se ,zastavicom prljavosti” (dirty bit). Ova
politika smanjuje saobrac¢aj prema memoriji, ali zahteva slozeniju kontrolu da
bi se ocuvala konzistentnost podataka jer ako dode do kvara, moze se desiti
da neki podaci jo$ nisu sinhronizovani.

Danijela

1.2. Memorijska hijerarhija 20

Primer 1.5

ARM Cortex-A53. Koristi dvo-nivojski kes: L1 od 32 KB za instrukcije
i 32 KB za podatke, te objedinjeni L2 do 2 MB. L1 je virtuelno adresiran,
i koristi politiku pisanje-prolazom sa alokacijom pri upisu. Tipi¢na kazna
promasaja iznosi 10-15 ciklusa ka L2 i oko 100 ciklusa do glavne memorije.

Intel Core i7. Sadrzi tri nivoa kesa: L1 (64 KB ukupno po jezgru), L2
(256 KB po jezgru) i L3 (deljeni, 8-16 MB). Svi nivoi su neblokirajuci
(non-blocking), tj. podrzavaju vise istovremenih upisa. Politika upisa je
pisanje-na-izbacivanje. Kod procesora Intel Core i7-6700, latencija pristupa
iznosi priblizno 4 ciklusa za L1, 12 ciklusa za L2, 42 ciklusa za L3 i oko 200
ciklusa za glavnu memoriju, sto jasno ilustruje razliku brzina u memorijskoj
hijerarhiji.

Performanse kes memorija unapreduju se nizom hardverskih i softverskih
tehnika koje smanjuju vreme pristupa podacima i broj promasaja:

% visestruki nivoi kesa(L1 privatni, L2 privatni, L3 deljeni),
%% preducitavanje podataka (prefetching),
& viSestruke banke i paralelni pristup,

% i politika koherentnosti (cache coherence).

Visestruki nivoi kesa (L1, L2, L3) omogucavaju da se kombinovanjem manjih
i brzih keSeva sa vec¢ima i sporijima postigne ravnoteza izmedu brzine i kapaciteta.
Tipicno su L1 keSevi privatni za svako jezgro, dok je L3 deljeni resurs.

Preducitavanje podataka koristi predvidanje buducih pristupa memoriji na
osnovu obrasca izvrsavanja programa, pa se podaci dovlace u ke$ pre nego sto ih
procesor zaista zatrazi, ¢ime se smanjuje broj promasaja.

Visestruke banke i paralelni pristup omogué¢avaju da kes istovremeno opsluzi
vise zahteva, ¢ime se povecava efektivna propusnost i iskoriséenost procesora.

Politike koherentnosti kesa obezbeduju da svi procesori u visejezgarnim si-
stemima u svakom trenutku vide iste vrednosti podataka, ¢ime se odrzava konzi-
stentnost izmedu kopija u razli¢itim kesevima.

1.2.2 Glavna memorija, SSD i NVM

Glavna memorija Euva sve podatke i programe koje procesor izvrsava. Mali deo
glavne memorije €¢ini ROM (engl. read only memory) — nepromenljiva memorija
koja sadrzi osnovne programe koji sluze za kontrolu odredenih komponenata ra-

21 1. Hardver savremenih racunara

Cunara (na primer, osnovni ulazno-izlazni sistem BIOS). Znatno vedi deo glavne
memorije ¢ini RAM — privremena promenljiva memorija sa slobodnim pristupom.
Terminoloski, podela glavne memorije na ROM i RAM nije najpogodnija jer ove
vrste memorije nisu sustinski razli¢éite — nepromenljivi deo (ROM) je takode me-
morija sa slobodnim pristupom (RAM). Da bi RAM memorija bila 5to brza, izraduje
se uvek od poluprovodnickih (elektronskih) elemenata. Danas se uglavnom reali-
zuje kao sinhrona dinamicka memorija (SDRAM). To znaéi da se prenos podataka
izmedu procesora i memorije vrsi u intervalima odredenim otkucajima sistemskog
sata (Cesto se u jednom otkucaju izvrsi nekoliko prenosa). Dinamicka memorija je
znatno jeftinija i jednostavnija, ali zato sporija od staticke memorije od koje se
obi¢no gradi kes.

Brza memorija je skupa i energetski ,skuplja” po bitu, dok je spora memorija
jeftinija, ali sa ve¢om latencijom. Hijerarhija memorija kombinuje vise tehnologija
tako da sistem deluje kao veliki i brz, uz cenu i potrosnju blisku donjim nivoima.
Kljué je lokalnost (vremenska i prostorna): gornji nivoi (keSevi, registri) omoguca-
vaju obezbeduju brzinu, a donji nivoi (DRAM, SSD) obezbeduju kapacitet.

DRAM. Dinamicka memorija sa slobodnim pristupom (engl. Dynamic Random
Access Memory, DRAM) predstavlja osnovnu radnu memoriju savremenih racu-
nara. Naziv ,dinamicka" potice od Einjenice da se svaka informacija u DRAM Ccipu
€uva kao elektri¢ni napon u kondenzatoru koji vremenom ,curi” i mora periodicno
da se osvezava (engl. refresh). Ova osobina &ini DRAM volatilnom — njen sadr-
zaj nestaje ¢im se izgubi napajanje. Ipak, zahvaljuju¢i jednostavnoj strukturi celije
(samo jedan tranzistor i jedan kondenzator), DRAM postize izuzetno visoku gu-
stinu podataka i povoljnu cenu po bitu, zbog ¢ega dominira kao glavna memorija
sistema.

#% Latencija i propusni opseg. Pristup jednoj lokaciji traje desetine
nanosekundi; nakon inicijalnog citanja, prenosi se Citav niz susednih
re€i u tzv. rafalu (engl. burst), Eime se znatno povecava propusni

opseg.

Osvezavanje i volatilnost. Svaka ¢elija mora se osveziti nekoliko
stotina puta u sekundi. Tokom tog procesa memorijski kontroler pri-
vremeno blokira pristupe, Sto uvodi dodatno kasnjenje i potrosnju
energije.

Energetski profil. DRAM trosi energiju i dok je neaktivna: deo po-
trosnje odlazi na osvezavanje (tzv. statika), a deo na same operacije
Citanja i pisanja (dinamicka potrosnja). Moderni standardi kao 5to su
DDR4 i DDR5 snizavaju radni napon, uvode rezime “spavanja” kako
bi se smanjila ukupna potrosnja energije.

Danijela

Danijela

Danijela

Danijela

1.2. Memorijska hijerarhija 22

Savremeni DRAM moduli organizovani su u blokove i redove, sto omogucava
da se vise pristupa izvrsava preklopljeno i time poveca propusni opseg memorije.
Kod tipicnih desktop procesora, vreme pristupa DRAM-u iznosi oko 60-100 ns, sto
je nekoliko desetina puta sporije od pristupa keSu drugog nivoa, a viSe stotina puta
sporije od registara procesora. Upravo ta razlika u brzini izmedu procesora i glavne
memorije jedan je od glavnih razloga postojanja slozene memorijske hijerarhije.

Glavna memorija je sredisnji radni prostor racunara — ona Cuva sve programe
i podatke koji su trenutno aktivni. Procesor ne pristupa direktno sporijim
uredajima kao 5to su SSD ili disk, ve¢ se svi podaci pre izvrsavanja moraju
preneti u DRAM. Sto je manji broj promasaja u kesu (L3—DRAM), to je
nize prosecno vreme pristupa (eng. Average Memory Access Time, AMAT)
i manja potrosnja energije.

SSD (Flash memorija) predstavlja nevolatilno skladiste podataka zasno-
vano na tehnologiji NAND tranzistora. Za razliku od DRAM-a, SSD ¢uva sadrzaj i
bez napajanja, ali mu je latencija pristupa visestruko veca — meri se u mikrose-
kundama. Upis u SSD ne vrsi se nad pojedinaénim bajtovima, ve¢ nad stranicama
i blokovima, koji se pre svakog upisa moraju obrisati. Upravo zato je neophodan
kontroler koji obavlja slozene funkcije: mapiranje fizickih adresa, kesiranje poda-
taka i ravnomerno rasporedivanje ciklusa pisanja kako bi se produzio vek trajanja
memorije.

U pogledu potrosnje, SSD je izuzetno Stedljiv u mirovanju, dok su operacije
pisanja energetski skuplje. Zahvaljuju¢i odsustvu mehanickih delova, SSD je daleko
pouzdaniji i energetski efikasniji od klasi¢nih tvrdih diskova. Njegova je osnovna
uloga trajno cuvanje podataka, a ne zamena za DRAM, jer i dalje poseduje vecu
nasumicnu latenciju i ogranicen broj ciklusa upisa.

NVM (nevolatilne memorije srednjeg sloja). Predstavljaju tehnologije koje
popunjavaju jaz izmedu brze, ali volatiine DRAM memorije i trajne, ali sporije Flash
memorije (SSD). One kombinuju osobine obe grupe — brz pristup u nanosekundama
do mikrosekundi i moguénost trajnog €uvanja podataka bez napajanja. NVM koristi
fizicke ili magnetne promene u materijalu koje ostaju i bez napajanja.

Najpoznatiji predstavnici su Intel Optane (zasnovan na 3D XPoint tehnologiji),
PCM (phase-change memory) i MRAM (magnetoresistive RAM). Za razliku od
NAND Flash-a, mnoge NVM tehnologije podrzavaju adresiranje po bajtu, sto
omogucava direktan pristup bez posredovanja datoteénog sistema. Latencije su
tipi¢no nekoliko mikrosekundi — znatno nize od SSD-a, ali i dalje ve¢e od DRAM-
a.

Ove memorije mogu raditi u razli¢itim rezimima: kao brzi disk (blokovski ure-
daj), kao prosirenje radne memorije, ili kao trajna radna memorija u kojoj
podaci prezivljavaju i nakon gasenja sistema.

Danijela

23 1. Hardver savremenih racunara

Energetski posmatrano, NVM ne zahteva osvezavanje, pa trosi manje ener-
gije u stanju mirovanja. Pristupi su skuplji od DRAM-a, ali znatno efikasniji od
NAND Flash-a po obavljenoj korisnoj operaciji. Uvodenjem ovog sloja u hijerarhiju
memorije, smanjuje se kazna promasaja ka sporijem SSD-u, a time i ukupna
potrosnja energije po izvrsenom zadatku.

Od registara do SSD-a: odnos brzine, kapaciteta i cene
Nivo Velicina Latencija Trajnost
Registri ~KB 0.2-0.5 ns ne
L1/L2/L3 (SRAM) desetine MB 14 / 4-12 / 30-50 ns ne
DRAM (glavna) 10-100+ GB 50-100 ns ne
NVM (Optane/PCM) GB-—desetine GB 0.3-2 us da
SSD (NAND) 0.5-10+ TB 50-150 us da

Virtuelna memorija. Predstavlja sloj apstrakcije izmedu fizicke memorije racu-
nara i programa koji se izvrsavaju. Ona omogucava da svaki proces “ima utisak”
da raspolaze sopstvenim, neprekidnim prostorom memorije, iako se on u stvarno-
sti deli izmedu vise programa i moze biti rasporeden na razlicite fizicke lokacije.
Virtuelnom memorijom upravlja operativni sistem, koji po potrebi premesta de-
love podataka izmedu glavne memorije i trajnog skladista. Na taj nacin se postize
veca fleksibilnost, zastita i efikasnije koris¢enje fizickih resursa. Detaljniji prikaz
mehanizama virtuelne memorije bi¢e dat u poglavlju Sistemski softver.

1.3 Sistemska magistrala i komunikacija komponenti

Performanse savremenih racunarskih sistema ne zavise samo od brzine proce-
sora, ve¢ i od nacina na koji su komponente medusobno povezane. Procesor,
memorija i ulazno—izlazni uredaji moraju stalno da razmenjuju podatke, pa je od
efikasnosti te komunikacije direktno zavisila i brzina celog sistema.

Magistrala (engl. bus) je zajednicki komunikacioni kanal preko koga vise ure-
daja moze da prenosi podatke, adrese i upravljacke signale. Kada je ra¢unar imao
samo nekoliko komponenti, takvo deljenje jedne zajednicke linije bilo je jednostav-
no i ekonomiéno resenje. Da bi se izbegli sudari, magistrala koristi mehanizam
arbitraze kojim se odlucuje koji uredaj u datom trenutku ima pravo prenosa.

Uloga magistrale je, dakle, da obezbedi zajednicki jezik komunikacije izmedu
svih delova racunara: procesor putem nje Cita podatke iz memorije, pise rezultate
nazad ili komunicira sa spoljnim uredajima. Takav princip rada ¢inio je osnovu svih
klasi¢nih raCunara, zasnovanih na arhitekturi fon Nojmana.

Kako su sistemi postajali slozeniji, a broj uredaja rastao, zajedni¢ka magistrala
postala je usko grlo. Vise uredaja je moralo da ¢eka svoj red na prenos, pa su
performanse opadale. Savremene arhitekture zato uvode preklopljene organizaci-
je, gde svaka komponenta ima sopstvenu vezu prema centralnom delu sistema.

Cena/bit
visoka
srednja
niza

niza

niza

Danijela

Danijela

Danijela

1.3. Sistemska magistrala i komunikacija komponenti

24

Takva mreza medupovezivanja (engl. interconnection network) obezbeduje vise
paralelnih kanala, ve¢u propusnost i manju latenciju.

sk

sk

%

%

1.3.1

Propusnost (engl. bandwidth) — koli€¢ina podataka koja se moze pre-
neti u jedinici vremena. Zavisna je od sirine magistrale (broja bitova
koji se prenose istovremeno) i od radnog takta (uCestalosti prenosa).
Aproksimativno, za sinhrone paralelne linije:

B=—=
8

gde je w Sirina (u bitovima), a f radni takt. Na primer: 64-bitna
magistrala na 100 MHz daje w ~0,8 GB/s (idealno). Stvarna
propusnost je obi¢no manja, jer deo vremena odlazi na upravljacke
signale i arbitrazu.

Latencija (engl. /atency) — vreme potrebno da podatak stigne od
izvora do odredista. Na latenciju uti€u kasnjenja u elektricnim vo-
dovima, vreme obrade u uredajima i eventualno cekanje na pristup
magistrali. Dok propusnost pokazuje ,koliko", latencija govori ,koliko
brzo“ — i oba parametra moraju biti uskladena za postizanje opti-
malnih performansi.

Arbitraza — mehanizam kojim se odlu¢uje koji uredaj u datom tre-
nutku ima pravo da koristi magistralu. U jednostavnim sistemima to
moze biti centralni arbitar (npr. procesor), dok slozeniji sistemi ko-
riste distribuisanu arbitrazu gde svaki uredaj ucestvuje u dogovoru o
redu pristupa. Cilj arbitraze je da obezbedi pravedan i efikasan prenos
podataka bez konflikata i gubitaka.

Topologija — nacin na koji su komponente fizicki povezane. Kod
klasi¢ne magistrale sve komponente dele jedan zajednicki vod, dok
savremene arhitekture koriste visestruke, paralelne veze i preklopljene
mreze. O razli¢itim topologijama (prsten, zvezda, mreza i dr.) detalj-
nije Ce biti re¢i u posebnom poglavlju o racunarskim mrezama.

Sistemske magistrala i PCI Express (PCle)

U starijim racunarima komunikacija izmedu procesora, memorije i uredaja oba-
vljala se putem klasi¢éne sistemske magistrale (npr. standardi PC/ ili AGP). Svi
uredaji delili su isti komunikacioni kanal, pa je bilo neophodno da sistem odreduje
koji uredaj u datom trenutku ima pravo pristupa. Takav pristup je jednostavan,
ali postaje ozbiljno ogranicenje kada broj uredaja i koli¢ina razmenjenih podataka

poraste.

Danijela

25 1. Hardver savremenih racunara

A) Klasicna deljena magistrala

CPU Glavna memorija

‘ GPU ’ Disk Mreza ’ USB ‘

B) PCle point-to-point

Glavna memorija

PCle RC / Switch

< |

< | < >
< > ‘

GPU NVMe SSD Mreza USB

‘)

Slika 1.3: (A) Klasi¢na deljena magistrala sa arbitrazom i jednim zajednickim kana-
lom; (B) PCle point-to-point topologija sa root-kompleksom /switch-em, paralelnim
vezama i DMA prenosima.

Savremeni sistemi zato uvode PCI Express (PCle), naslednika klasi¢ne magi-
strale, koji koristi direktne digitalne veze izmedu parova uredaja (eng. point-
to-point). Svaka komponenta ima sopstveni kanal ka centralnom delu sistema (pro-
cesoru ili Cipsetu), pa se prenosi podataka mogu odvijati istovremeno i nezavisno.
Time se izbegavaju zaguSenja i pove¢ava ukupna propusnost sistema.

Dodatno, savremeni uredaji povezani preko PCle standarda mogu samostalno
da razmenjuju podatke sa glavnom memorijom koris¢enjem direktnog pristupa
memoriji (DMA). Na taj nacin procesor ne mora da posreduje u svakom prenosu,
Cime se oslobada za druge zadatke i smanjuje ukupno vreme obrade. Ova arhi-
tektura omogucava izuzetno brzu komunikaciju sa uredajima koji zahtevaju visok
protok podataka, poput grafickih procesora, NVMe diskova ili mreznih adaptera.

1.3.2 Cipset i kontroleri

Savremene maticne ploCe viSe nisu zasnovane na jednoj centralnoj magistrali,
ve¢ na nizu specijalizovanih kontrolera koji povezuju procesor, memoriju i uredaje.
Ulogu koordinacije ima cipset, odnosno skup logickih Cipova koji upravljaju ko-
munikacijom izmedu procesora, glavne memorije, grafickog podsistema, skladista
podataka i perifernih uredaja.

Danijela

Danijela

1.4. Ulazno—izlazni podsistem 26

U ranijim generacijama arhitekture razlikovala su se dva osnovna dela Cipseta:
severni most (engl. northbridge), koji je povezivao procesor i memoriju, i juzni
most (engl. southbridge), koji je sluzio za sporije 1/O uredaje (USB, SATA, PCl).
Danas su te funkcije objedinjene: memorijski kontroler i PCle konekcije Eesto su
integrisani direktno u procesor, dok Cipset preuzima samo pomocéne funkcije —
povezivanje dodatnih uredaja, mreznih interfejsa i upravljanje napajanjem.

1.4 Ulazno-izlazni podsistem

Ulazno-izlazni (//O) podsistem predstavlja kljuénu komponentu savremenih
raunarskih sistema, jer omogucava komunikaciju izmedu procesora, memorije i
spoljasnjih uredaja. Razvoj interneta i servisa koji se oslanjaju na masovno skladi-
Stenje i mreznu povezanost pomerio je fokus arhitekture racunara sa ra¢unanja ka
komunikaciji i skladistenju informacija.

I/O podsistem obuhvata uredaje (diskove, tastature, mrezne adaptere, gra-
ficke kartice), interfejse i kontrolere koji upravljaju prenosom podataka iz-
medu uredaja i glavne memorije.

I/O uredaji su fizicki elementi sistema koji obavljaju ulazne ili izlazne operacije.
Zbog raznolikosti brzina, formata podataka i protokola komunikacije, svaki uredaj
poseduje odgovarajuci kontroler — specijalizovani procesor koji posreduje izmedu
uredaja i magistrale sistema.

Tipi€no, procesor ne komunicira direktno sa uredajem, ve¢ salje komande kon-
troleru. Kontroler prevodi te komande u niz elektri¢nih signala prilagodenih uredaju,
nadgleda izvrsenje i obavestava procesor putem prekida kada je operacija zavrsena
(vise o prekidima u sekciji Sistemski softver).

Primer: Disk kontroler prevodi zahteve operativnog sistema (npr. Citanje sek-
tora 12345) u konkretne mehanicke operacije — pozicioniranje glave i itanje
odgovarajuce staze. Moderni kontroleri ukljucuju i kes memoriju i algoritme za
optimizaciju redosleda komandi.

I/O sistem se Cesto modeluje kao hijerarhija slojeva: na vrhu su aplikacije i
operativni sistem, ispod njih drajveri i kontroleri, a na dnu fizi¢ki uredaji. Ovakva
slojevita organizacija omogucava apstrakciju hardvera i modularnost u projektova-
nju.

Danijela

27 1. Hardver savremenih racunara

1.4.0.1 Direktan pristup memoriji (DMA)

Da bi se smanjilo optere¢enje procesora tokom prenosa podataka, koristi se
mehanizam direktnog pristupa memoriji (eng. Direct Memory Access — DMA).
Kod standardnog /O prenosa procesor bi morao da procita svaki bajt sa uredaja
i upise ga u memoriju, Sto je neefikasno. DMA kontroler preuzima ovu ulogu:
on samostalno kopira blokove podataka izmedu uredaja i memorije, dok procesor
nastavlja sa izvrsavanjem drugih instrukcija.

Kada DMA prenos zavrsi, kontroler generise prekid da bi obavestio procesor
da su podaci spremni. Ovakav pristup znacajno povecava propusnost sistema i
omogucava preklapanje I/0 i raunanja.

DMA omogucava istovremeno izvrSavanje procesorskih operacija i prenosa
podataka, Cime se postize veca iskoriS¢enost magistrale i manja latencija
I/O operacija.

1.4.0.2 Standardi i interfejsi: USB, PCle, NVMe

Zahvaljuju¢i standardizovanim 1/0O interfejsima, uredaji razlicitih proizvodaca
mogu da rade zajedno i da ostvaruju visok protok podataka.

% USB (Universal Serial Bus) je serijski standard koji povezuje periferne
uredaje male i srednje brzine (tastature, miseve, kamere, memorijske stikove).
Moderni standardi kao USB 3.2 i USB4 dostizu brzine prenosa i do 40 Gb/s
i podrzavaju napajanje uredaja.

%

PCI Express (PCle) je glavni interfejs za visoko-propusne uredaje (graficke
kartice, SSD diskove, mrezne adaptere). PCle koristi visekanalnu arhitekturu
koja omogucava paralelne prenose podataka sa malom latencijom.

* NVMe (Non-Volatile Memory Express) je protokol razvijen specijalno za
SSD uredaje zasnovane na flash memoriji. Za razliku od SATA ili SCSI pro-
tokola, NVMe koristi PCle magistralu i omogucava hiljade paralelnih redova
komandi, ¢ime dramati¢no smanjuje latenciju pristupa podacima.

Kombinacijom PCle i NVMe standarda postignute su performanse koje omo-
gucavaju visestruko brzi pristup u odnosu na tradicionalne magnetne diskove —
latencije su reda mikrosekundi i propusnost je ve¢a od 5 GB/s po uredaju.

Pouzdanost informacija se ostvaruje €uvanjem podataka u vise kopija ili uz
dodatne kontrolne podatke koji omogucavaju oporavak ako dode do greske, kao
kod RAID organizacija diskova, i upotrebom nevolatilnih medijuma (SSD, NVMe).
Operativni sistem upravlja redovima komandi i prioritizacijom pristupa, dok DMA
i kontroleri obezbeduju efikasan fizicki prenos.

Danijela

1.5. Integracija hardverskih podsistema 28

Savremeni 1/O podsistem nije samo skup perifernih uredaja, ve¢ slozena
arhitektura koja povezuje procesor, memoriju, magistralu i spoljasnji svet
kroz standardizovane, paralelne i pouzdane komunikacione protokole.

1.5 Integracija hardverskih podsistema

Racunarski sistem funkcioniSe kao celina zahvaljujuéi slozenoj integraciji kom-
ponenti na maticnoj ploci (engl. motherboard). Ona predstavlja fizicku osnovu
sistema i obezbeduje elektricno napajanje, komunikacione puteve i sinhronizaciju
izmedu procesora, memorije, grafickog podsistema i ulazno—izlaznih uredaja.

Centralnu ulogu u koordinaciji komponenti ima cipset, koji se istorijski sastojao
od severnog i juznog mosta. Savremeni procesori preuzeli su deo funkcionalnosti
Cipseta: kontroler memorije i PCle interfejs sada su integrisani direktno u CPU, dok
Cipset na matiénoj ploci (Eesto nazvan Platform Controller Hub, PCH) upravlja
perifernim uredajima, mreznim i USB kontrolerima.

Moderni racunari ne pokre¢u se odmah operativnim sistemom, ve¢ prolaze kroz
proces inicijalizacije kojim upravlja ugradeni programski kod, firmware ugraden u
mati¢nu plo€u. U starijim sistemima to je bio BIOS (Basic Input/Output System),
dok je u novim sistemima zamenjen naprednijim UEFI firmware (Unified Exten-
sible Firmware Interface).

UEFI predstavlja savremeni sloj izmedu hardvera i operativnog sistema: on
prepoznaje komponente, vrsi testiranje, uitava ucitavaca operativnog siste-
ma (eng. boot loader) i omogucava sigurno pokretanje sistema (eng. Secure
Boot).

BIOS je monolitan i zatvoren sistem — skup rutinskih procedura u ROM-u, &iji
je zadatak bio da izvrsi POST (Power-On Self Test) i pokrene operativni sistem.
Korisnik i programeri nisu mogli da mu dodaju funkcionalnosti: nije imao drajvere
koje bi se lako azurirali, niti podrsku za mrezu, graficki interfejs ili velike diskove
(vise od 2 TB).

Kod klasiénih racunara iz 80-ih i 90-ih, BIOS je bio upisan u ROM ¢&ip direktno
na mati¢noj ploci. To znadi:

% sadrzaj BIOS-a je fizicki ,,urezan” u ¢ip,
% azuriranje nije bilo moguée ili je zahtevalo fizicku zamenu Cipa,
% kod je bio vrlo mali (obi¢no 64 — 512 KB) i pisan u &istom asembleru.

UEFI je modularan i programabilan — moze da koristi mrezne drajvere, graficki
interfejs, pa €ak i jednostavne aplikacije pre nego 5to se operativni sistem pokrene.
Na taj nacin on obezbeduje vecu fleksibilnost i sigurnost u odnosu na tradicionalni
BIOS.

Danijela

29 1. Hardver savremenih racunara

UEFI se i dalje fizicki nalazi na mati¢noj ploéi, ali ne vise u ROM-u, ve¢ u
malom fles Cipu (SPI flash ROM) koji se moze prepisivati. To znaci:

%

UEFI je i dalje ,ugraden” — deo ploce — ali se moze aZurirati softverski,

%

¢ip je tipicno veli¢ine 8 — 16 MB,

3%

proizvodac (ili korisnik) moze izvrsiti firmware update (tzv. ,flesovanje” BIOS-
a/UEFl-ja).

Kada se racunar ukljudi:

kY

% Procesor pocinje da izvrsava kod iz te male flash memorije (adresira se di-
rektno).

%

UEFI pokrece osnovne servise, ucitava drajvere za PCle, SATA, USB itd.

3%

Zatim pronalazi i pokre¢e ucitava¢ operativnog sistema (eng. boot loader)
sa diska (ili mreze).

Integracija svih ovih slojeva — fizickih, logickih i upravljackih — predstavlja osno-
vu savremenog racunarskog sistema. Operativni sistem preuzima kontrolu tek nakon
sto UEFI zavrsi inicijalizaciju i preda mu izvrsavanje, ¢ime pocinje rad softverskog
sloja sistema.

inicijalizacija

mem. kanal CPU mem. kanal
RAM,----- jezgra, kes, IMC il
PBle x4

I

I PCle 416

: DMI/PCle link

I GPU NVMe SSD

' PCle x16 Y M.2 / PCle x4
UEFI firmware SPI

Sl el > Cipset (PCH)

Y

SATA portovi ‘ USB kontroler | Ethernet kontroler

Slika 1.4: Minimalna Sema integracije: CPU sa integrisanim memorijskim kontrole-
rom (IMC), RAM, PCle veze ka GPU/NVMe, veza ka PCH (DMI/PCle), periferni
kontroleri i UEFI firmware u SPI flash memoriji.

1.6. Trendovi u savremenim arhitekturama 30

1.6 Trendovi u savremenim arhitekturama

Energetska potrosnja danas predstavlja jedan od klju¢nih izazova u dizajnu
savremenih racunarskih sistema. Snaga se mora dovesti i ravnomerno raspodeliti
unutar ¢ipa, a zatim efikasno odvesti u vidu toplote. Razlikuju se tri fundamentalna
parametra: vrsna snaga (engl. peak power), koja oznaava maksimalno opterecenje
napajanja; termicka projektna snaga (Thermal Design Power, TDP), koja definise
zahteve sistema hladenja; i srednja snaga, koja zavisi od tipi¢nog opterecenja. Ipak,
za realnu procenu efikasnosti presudniji je pojam energije po zadatku — proizvod
prosecne snage i vremena izvrsavanja. U praksi, procesor koji trosi vise snage moze
biti energetski povoljniji ako posao obavi znatno brze. Posto su vrednosti napona
poslednjih godina prakti¢no ,zakocene” na oko 1 V, rast radnog takta se usporio,
a fokus je premesten na energetsku efikasnost i paralelizam.

Najvaznije savremene tehnike ukljucuju:
%% iskljucivanje takta neaktivnim jedinicama (eng. clock gating),

%% dinamicko prilagodavanje napona i frekvencije (eng. Dynamic Voltage
and Frequency Scaling, DVFS),

%% iskljucivanje napajanja neaktivnim delovima Cipa (power gating), kao
i strategiju trka-do-zaustavljanja (eng. race-to-halt), kojom se zada-
tak izvrSava maksimalnom brzinom, a zatim sistem prelazi u stanje
mirovanja radi uStede energije.

Znacajan udeo ukupne potrosnje dolazi i iz staticke energije izazvane curenjem
struje kroz tranzistore, naro€ito u velikim kes memorijama tipa SRAM. Zbog toga
savremeni Cipovi uvode visestruke energetske domene, koji omoguéavaju potpuno
iskljucivanje delova procesora kada nisu u upotrebi.

SoC (System-on-Chip) arhitekture integriSu procesorska jezgra, grafiku, memo-
rijski kontroler, mrezni interfejs i druge komponente u jedinstveni €ip. Ovaj pristup
smanjuje kasnjenja i potrosnju energije, jer se komunikacija odvija unutar Cipa, bez
potrebe za spoljnim magistralama.

Pored logicke potrosnje, presudnu ulogu ima i memorijska hijerarhija: pristup
glavnoj memoriji (DRAM) trosi i do 10* puta vise energije nego operacija sabiranja
u aritmeticko—logickoj jedinici. Ova razlika objasnjava zasto je lokalna povezanost
podataka i upotreba bafera klju¢na za energetski efikasne arhitekture.

31 1. Hardver savremenih racunara

Sa stanovista projektovanja, glavni cilj postaje minimizacija energije po za-
datku (eng. energy per task) i maksimizacija performansi po vatu (engl. per-
formance per watt). Kako vise nije moguce sve tranzistore istovremeno dr-
zati aktivnim bez prekoracenja termickog limita, znacajan deo Cipa ostaje
neaktivan — fenomen poznat kao tamni silicijum (engl. dark silicon). Ovo
je dovelo do porasta upotrebe domen-specificnih akceleratora kao sto su
TPU, NPU i Tensor Cores, koji omogucavaju visok stepen paralelizma uz
minimalnu potrosnju energije.

U celini, dalji razvoj procesora sve manje zavisi od povecanja takta, a sve vise od
heterogenosti, specijalizacije i stedljive upotrebe podataka. Energetska efikasnost
je postala novo merilo napretka, a ne samo brzina izvrsavanja.

Pitanja i zadaci za vezbu

Pitanje 1.1. Koje tri osnovne komponente cine tipican racunar prema Fon Noj-
manovom modelu?

Pitanje 1.2. Koje su osnovne funkcije aritmeticko—logicke jedinice (ALU)?
Pitanje 1.3. Koje su faze ciklusa instrukcije koje sprovodi kontrolna jedinica?
Pitanje 1.4. Sta je osnovna ideja cevovoda (pipelining) i sta mu je glavni cilj?
Pitanje 1.5. Koje tri vrste hazard-a mogu da se pojave u cevovodu?

Pitanje 1.6. Sta oznacava pojam Instruction-Level Parallelism (ILP)?

Pitanje 1.7. Kako predikcija skokova doprinosi smanjenju broja ciklusa po in-
strukciji (CPI)?

Pitanje 1.8. U ¢emu se razlikuju ILP i TLP pristupi paralelizmu?

Pitanje 1.9. Koja je osnovna razlika izmedu CPU i GPU arhitekture u pogledu
paralelizma?

Pitanje 1.10. Koja je uloga kes memorije u hijerarhiji memorija?

Pitanje 1.11. Koja je razlika izmedu politika upisa pisanje-prolazom (engl. write-
through) i pisanje-na-izbacivanje (engl. write-back)?

Pitanje 1.12. Sta je osnovna funkcija sistemske magistrale?

Pitanje 1.13. Koje su prednosti PCl Express (PCle) u odnosu na klasi¢nu zajed-
nicku magistralu?

Pitanje 1.14. Sta je zadatak cipseta (PCH) u savremenim racunarima?

1.6. Trendovi u savremenim arhitekturama 32

Pitanje 1.15. Koja je osnovna razlika izmedu BIOS-a i UEFI firmware-a?
Pitanje 1.16. Gde se fizicki nalazi UEFI kod i kako se aZurira?
Pitanje 1.17. Sta znaci pojam Direct Memory Access (DMA) i cemu sluzi?

Pitanje 1.18. Koja je funkcija NVMe protokola u odnosu na starije SATA inter-
fejse?

Pitanje 1.19. Sta je osnovna ideja System-on-Chip (SoC) arhitekture?

Pitanje 1.20. Koja su tri osnovna parametra energetske potrosnje Cipa (vrsna
snaga, TDP, srednja snaga)?

Pitanje 1.21. Navedi dve tehnike upravljanja energijom koris¢ene u savremenim
procesorima.

Pitanje 1.22. Sta je tamni silicijum (dark silicon) i kako utice na dizajn proce-
sora?

	Sadržaj
	Hardver savremenih računara
	Procesor (CPU)
	Memorijska hijerarhija
	Sistemska magistrala i komunikacija komponenti
	Ulazno–izlazni podsistem
	Integracija hardverskih podsistema
	Trendovi u savremenim arhitekturama

