
Ele
ktr

on
ska

ver
zija

(20
25

)
Danijela Simić Filip Marić Predrag Janičić

Milan Banković Milena Vujošević Janičić Ve-

sna Marinković Mladen Nikolić Mirko Spasić Sa-

na Stojanović Ðurđević Ivana Tanasijević

UVOD U INFORMATIKU

Ele
ktr

on
ska

ver
zija

(20
25

)

Beograd
2025.

Ele
ktr

on
ska

ver
zija

(20
25

)

Autori:
dr Danijela Simić, docent na Matematičkom fakultetu u Beogradu
dr Filip Marić, redovni profesor na Matematičkom fakultetu u Beogradu
dr Predrag Janičić, redovni profesor na Matematičkom fakultetu u Beogradu
dr Milan Banković, docent na Matematičkom fakultetu u Beogradu
dr Milena Vujošević Janičić, vandredni profesor na Matematičkom fakultetu u Beo-
gradu
dr Mladen Nikolić, vandredni profesor na Matematičkom fakultetu u Beogradu
dr Mirko Spasić, docent na Matematičkom fakultetu u Beogradu
dr Sana Stojanović Ðurđević, docent na Matematičkom fakultetu u Beogradu
dr Ivana Tanasijević, docent na Matematičkom fakultetu u Beogradu

UVOD U INFORMATIKU

Izdavač: Matematički fakultet Univerziteta u Beogradu
Studentski trg 16, 11000 Beograd

Recenzenti:
??
??

Obrada teksta i ilustracije: autori (osim za slike nabrojane na kraju knjige)
Dizajn korica: autori
©2025. Danijela Simić, Filip Marić, Predrag Janičić, Milan Banković, Milena Vu-
jošević Janičić, Mladen Nikolić, Mirko Spasić, Sana Stojanović Ðurđević i Ivana
Tanasijević
Ovo delo zašticeno je licencom Creative Commons CC BY-NC-ND 4.0 (Attribution-
NonCommercial-NoDerivatives 4.0 International License). Detalji licence mogu se vide-
ti na veb-adresi http://creativecommons.org/licenses/by-nc-nd/4.0/. Dozvoljeno
je umnožavanje, distribucija i javno saopštavanje dela, pod uslovom da se navedu ime-
na autora. Upotreba dela u komercijalne svrhe nije dozvoljena. Prerada, preoblikovanje i
upotreba dela u sklopu nekog drugog nije dozvoljena.

http://creativecommons.org/licenses/by-nc-nd/4.0/

Ele
ktr

on
ska

ver
zija

(20
25

)Sadržaj

Sadržaj 3

1 Hardver savremenih računara 7
1.1 Procesor (CPU) . 8
1.2 Memorijska hijerarhija . 16
1.3 Sistemska magistrala i komunikacija komponenti 23
1.4 Ulazno–izlazni podsistem . 26
1.5 Integracija hardverskih podsistema 28
1.6 Trendovi u savremenim arhitekturama 30

3

Ele
ktr

on
ska

ver
zija

(20
25

)

Ele
ktr

on
ska

ver
zija

(20
25

)
Predgovor

Ovo je materijal za predmet Uvod u informatiku na prvoj godini smera Infor-
matika na Matematičkom fakultetu Univerziteta u Beogradu) Nadamo da izbor
sadržaja i način prezentovanja mogu da budu zanimljivi ne samo studentima, već
i svima drugima koje interesuje ova oblast računarstva.

Bićemo zahvalni čitaocima na svim ispravkama, sugestijama i komentarima koje
nam pošalju.

✽ Kratka istorija informatike i informaciono-komunikacionih tehnologija – Filip
Marić i Predrag Janičić

✽ Hardver i softver - Filip Marić, Predrag Janičić i Danijela Simić

✽ Digitalizacija - Filip Marić, Predrag Janičić i Danijela Simić

✽ Algoritmi i izračunljivost - Predrag Janičić

✽ Sistemski softver - Milan Banković

✽ Računarske mreže - Mirko Spasić

✽ Programski jezici i prevodioci - Milena Vujošević Janičić

✽ Proces razvoja softvera - Danijela Simić

✽ Baze podataka - Ivana Tanasijević

✽ Matematika i informatika - Filip Marić

✽ Veštačka inteligencija - Mladen Nikolić i Predrag Janičić

✽ Računarska grafika - Vesna Marinković

5

Ele
ktr

on
ska

ver
zija

(20
25

)

Sadržaj 6

✽ Računari i društvo - Sana Stojanović Ðurđević

Danijela Simić, Filip Marić, Predrag Janičić, Milan Banković, Milena Vujošević
Janičić, Mladen Nikolić, Mirko Spasić, Sana Stojanović Ðurđević i Ivana

Tanasijević

Beograd, mart 2024.

Ele
ktr

on
ska

ver
zija

(20
25

)1
GLAVA

Hardver savremenih računara

Hardver čine opipljive, fizičke komponente računara. Iako je u osnovi savremenih
računarskih sistema i dalje Fon Nojmanova mašina (procesor i memorija), oni se
danas ne mogu zamisliti bez niza hardverskih komponenti koje olakšavaju rad sa
računarom.

Iako na prvi pogled deluje da se jedan uobičajeni stoni računar sastoji od kućišta,
monitora, tastature i miša, ova podela je veoma površna, podložna promenama
(već kod prenosnih računara, stvari izgledaju znatno drugačije) i nikako ne ilustruje
koncepte bitne za funkcionisanje računara. Mnogo značajnija je podela na osnovu
koje računar čine:

✽ procesor tj. centralna procesorska jedinica (engl. Central Processing Unit,
CPU), koja obrađuje podatke;

✽ glavna memorija (engl. main memory), u kojoj se istovremeno čuvaju i podaci
koji se obrađuju i trenutno pokrenuti programi (takođe zapisani binarno, u
obliku podataka);

✽ različiti periferijski uređaji ili ulazno-izlazne jedinice (engl. peripherals, input-
output devices, IO devices), kao što su miševi, tastature, ekrani, štampači,
diskovi, a koje služe za komunikaciju korisnika sa sistemom i za trajno skla-
dištenje podataka i programa.

Sve nabrojane komponente međusobno su povezane i podaci se tokom rada
računara prenose od jedne do druge. Veza između komponenti uspostavlja se har-
dverskim sklopovima koji se nazivaju magistrale (engl. bus). Magistrala obuhvata
provodnike koji povezuju uređaje, ali i čipove koji kontrolišu protok podataka. Svi
periferijski uređaji se sa memorijom, procesorom i magistralama povezuju hardver-
skim sklopovima koji se nazivaju kontrolori . Matična ploča (engl. motherboard) je

7

Danijela

Danijela

Danijela

Danijela

Ele
ktr

on
ska

ver
zija

(20
25

)

1.1. Procesor (CPU) 8

štampana ploča na koju se priključuju procesor, memorijski čipovi i svi periferijski
uređaji. Na njoj se nalaze čipovi magistrale, a danas i mnogi kontrolori periferijskih
uređaja.

1.1 Procesor (CPU)

1.1.1 Osnovne komponente procesora
Procesor predstavlja centralnu komponentu svakog računarskog sistema zasno-

vanog na Fon Nojmanovom modelu arhitekture. Njegova osnovna funkcija je da
upravlja tokom instrukcija i izvršava operacije nad podacima, čineći time proces
obrade informacija mogućim. U savremenim računarima svi osnovni delovi proce-
sora objedinjeni su u jedinstvenu fizičku celinu — centralnu procesorsku jedinicu
(engl. Central Processing Unit, CPU), koja je implementirana kao mikroprocesor
na jednom integrisanom kolu.

Procesor se sastoji od tri osnovna podsistema:

✽ aritmetičko-logičke jedinice (engl. Arithmetic Logic Unit, ALU), zadužene za
izvođenje aritmetičkih (sabiranje, oduzimanje, množenje, deljenje) i logičkih
operacija (konjunkcija, disjunkcija, negacija, poređenje);

✽ kontrolne jedinice (engl. Control Unit, CU), koja interpretira i dekodira in-
strukcije, koordinira izvršavanje i upravlja prenosom podataka između delova
procesora i memorije;

✽ skupa registara — malih, vrlo brzih memorijskih ćelija koje privremeno čuvaju
operande, adrese i međurezultate obrade. Obično fiksirane širine (8 bitova,
16 bitova, 32 bita, 64 bita).

U najranijim implementacijama komunikacija između ALU i memorije obavljala
se preko posebnog registra nazvanog akumulator. Savremeni procesori, međutim,
raspolažu većim brojem opštih i specijalizovanih registara, čime se značajno sma-
njuje broj pristupa glavnoj memoriji i ubrzava obrada podataka.

Kontrolna jedinica procesora izvršava tzv. ciklus instrukcije koji se sastoji iz tri
osnovne faze: dohvatanja (engl. fetch), dekodiranja (engl. decode) i izvršavanja
(engl. execute). Tokom svake faze procesor čita instrukciju iz memorije, određuje
operaciju koju treba obaviti i sprovodi odgovarajuću aritmetičku ili logičku akciju
nad podacima u registrima.

Primer 1.1. Ciklus instrukcije
Neka je u registru R1 vrednost 5, a u registru R2 vrednost 3.
Instrukcija ADD R1, R2 znači da se sabira sadržaj registra R2 sa R1, a
rezultat se ponovo upisuje u R1.
Kontrolna jedinica redom dohvata, dekodira i prosleđuje ALU instrukciju,
koja izvršava sabiranje i ažurira sadržaj registra R1 na vrednost 8.

Danijela

Danijela

Danijela

Danijela

Danijela

Ele
ktr

on
ska

ver
zija

(20
25

)

9 1. Hardver savremenih računara

Brzina rada procesora izražava se najčešće kroz broj instrukcija koje može izvr-
šiti u sekundi, označen kao MIPS (engl. Million Instructions Per Second), odnosno
u broju operacija u pokretnom zarezu po sekundi, FLOPS (engl. Floating Point
Operations per Second). Moderni procesori ostvaruju performanse reda veličine
desetina gigaflopsa (109 operacija u sekundi), dok se u vrhunskim serverskim i
grafičkim čipovima dostižu i teraflopi (1012 operacija u sekundi).

Dodatni pokazatelji arhitektonske moći procesora su broj jezgara (engl. cores),
širina reči (32 ili 64 bita) i radni takt (engl. clock rate), koji se izražava u gigaherci-
ma (GHz). Viši takt omogućava brže izvršavanje instrukcija, ali povećava potrošnju
energije i disipaciju toplote, zbog čega savremeni procesori teže kompromisu između
performansi i energetske efikasnosti.

CPU

Kontrolna
jedinica

Aritmetičko
logička jedinica

registri

Memorija
Ulazni
uređaji

Izlazni
uređaji

magistrala

Slika 1.1: Shema računara Fon Nojmanove arhitekture

1.1.2 Cevovod i tehnike ubrzanja

Cevovod (engl. pipelining) predstavlja ključnu tehniku ubrzanja savremenih pro-
cesora, zasnovanu na preklapanju faza obrade instrukcija. Umesto da svaka
instrukcija čeka završetak prethodne, različite faze više instrukcija izvršavaju se
istovremeno, čime se značajno povećava protok (engl. throughput) sistema.

Danijela

Ele
ktr

on
ska

ver
zija

(20
25

)

1.1. Procesor (CPU) 10

Primer 1.2. Jednostavni cevovod sa pet faza
Savremeni RISC procesori, poput RISC-V ili ARM, često koriste klasičan
petostepeni cevovod:

✽ IF (Instruction Fetch) – čitanje instrukcije iz memorije;

✽ ID (Instruction Decode) – dekodiranje i čitanje registara;

✽ EX (Execute) – aritmetičko-logičke operacije ili izračunavanje adre-
se;

✽ MEM (Memory) – pristup podacima u memoriji;

✽ WB (Write-Back) – upis rezultata u registar.

Dok jedna instrukcija ulazi u fazu dekodiranja, druga se izvršava, treća
pristupa memoriji, a četvrta upisuje rezultat. Time se, idealno, ostvaruje
ubrzanje približno broju faza cevovoda.

Cevovod povećava broj izvršenih instrukcija u jedinici vremena, ali ne smanjuje
vreme izvršavanja pojedinačne instrukcije. Štaviše, dodatna kontrolna logika i re-
gistri između faza unose mali vremenski trošak (pipeline overhead). Zbog toga se
u praksi ostvaruje ubrzanje nešto manje od teorijskog maksimuma.

Balansiranje faza
Efikasnost cevovoda zavisi od ravnoteže dužina faza – ukupno vreme ciklusa
određeno je najsporijom fazom. Ako je neka faza znatno duža, ona postaje
usko grlo performansi. Cilj projektanta je da sve faze traju približno isto.

1.1.2.1 Vrste prepreka u cevovodu

Idealno izvršavanje je narušeno pojavom hazarda, situacija koje onemoguća-
vaju da sledeća instrukcija započne svoju fazu u predviđenom ciklusu. U praksi se
izdvajaju tri osnovne klase:

✽ Strukturni hazard – nastaje kada hardver nema dovoljan broj resursa za
istovremeno izvršavanje svih faza (npr. zajednička memorija za instrukcije i
podatke).

✽ Podatkovni hazard – javlja se kada jedna instrukcija zavisi od rezultata pret-
hodne (read-after-write problem). Rešenja uključuju prosleđivanje rezultata
(engl. forwarding) i mehanizme zadrške (interlocks).

✽ Kontrolni hazard – posledica grananja: dok procesor ne zna ishod skoka, ne
zna ni koju instrukciju sledeću da učita. Savremeni procesori ublažavaju ovaj
problem predikcijom grananja i spekulativnim izvršavanjem.

Ele
ktr

on
ska

ver
zija

(20
25

)

11 1. Hardver savremenih računara

U idealnim uslovima cevovod može ubrzati izvršavanje do broja svojih faza, ali
svaka pojava hazard-a umanjuje taj efekat. Zbog toga su upravo mehanizmi
detekcije i ublažavanja hazard-a osnov savremenog dizajna procesora.

Kada su faze pravilno balansirane, a hazardi minimalizovani, cevovod omogu-
ćava procesoru da istovremeno izvršava više instrukcija.

1.1.2.2 Paralelizam na nivou instrukcija (ILP)

Paralelizam na nivou instrukcija (engl. Instruction-Level Parallelism, ILP)
predstavlja sposobnost procesora da izvršava više nezavisnih instrukcija istovreme-
no, iskorišćavajući preklapanje u cevovodu. Dok cevovod povećava protok obrade,
ILP meri koliko instrukcija može zaista biti izvršeno paralelno bez narušavanja
ispravnosti programa.

Suština ILP-a leži u pronalaženju instrukcija koje nemaju međusobne zavisnosti.
Kada se dve instrukcije ne oslanjaju na iste podatke niti kontrolišu jedna drugu,
procesor ih može istovremeno dekodirati i izvršavati. Ograničavajući faktori su
podatkovne, imenske i kontrolne zavisnosti, koje određuju redosled instrukcija i
sprečavaju prekomerno preklapanje. Ako procesor ne prepozna zavisnosti pravilno,
može doći do pogrešnih rezultata ili izuzetaka tokom izvršavanja.

Vrste zavisnosti
✽ Podatkovna zavisnost (RAW) – instrukcija koristi rezultat prethod-

ne, pa mora čekati da se on izračuna.

✽ Imenska zavisnost (WAW, WAR) – dve instrukcije koriste isto ime
registra ili memorijsku lokaciju, iako se podaci ne prenose.

✽ Kontrolna zavisnost – određuje redosled izvršavanja u prisustvu gra-
nanja.

Kompajleri i procesori zajedno nastoje da povećaju ILP. Savremene arhitekture
koriste dinamičke tehnike otkrivanja paralelizma u samom hardveru (spekulacija,
predikcija grananja), dok kompajleri primenjuju statičke transformacije tokom pre-
vođenja koda. Dve osnovne kompajlerske metode su:

✽ Promena redosleda nezavisnih instrukcija (eng. instruction reodering),

✽ Proširivanje tela petlje (eng. loop unrolling) – kako bi se smanjio broj gra-
nanja i povećao broj nezavisnih instrukcija koje se mogu izvršavati paralelno.

Ele
ktr

on
ska

ver
zija

(20
25

)

1.1. Procesor (CPU) 12

Primer 1.3. Primer transformacije petlje
Petlja koja sabira dva vektora:

\texttt{for (i = 0; i < n; i++) x[i] = x[i] + y[i];}

može se „odmotati” (engl. unroll) tako da se u jednoj iteraciji obrade, re-
cimo, četiri elementa istovremeno. Time se smanjuje učestalost grananja i
povećava broj instrukcija koje se paralelno izvršavaju.

U praksi, ILP je ograničen zavisnostima u programu i brojem resursa proce-
sora. Što je više nezavisnih instrukcija u osnovnom bloku koda, to je veći stepen
paralelizma koji arhitektura može iskoristiti.

1.1.2.3 Predikcija skokova

Grananja uvode kontrolne hazarde: da bi se očuvale kontrolne zavisnosti, cevo-
vod mora da čeka ishod skoka, što stvara zastoje i povećava CPI. Loop unrolling
smanjuje broj grananja, ali ključno je i predviđanje (engl. branch prediction), ko-
jim procesor pogađa ishod i uslovno izvršava instrukcije duž predviđene putanje na
osnovu pretpostavki. Ukoliko se ispostavi da je predviđanje bilo pogrešno, efekti
predviđanja se poništavaju, a cevovod se prazni.

Osnovni prediktor. Najjednostavniji oblik predikcije je 2-bitni zasićujući bro-
jač po svakoj grani (tzv. (0,2) prediktor), koji pamti poslednja dva ishoda i prema
njima odlučuje da li će naredni skok biti „uzet“ ili „neuzet“. Ova šema koristi samo
lokalne informacije o ponašanju konkretne grane.

Korelacioni prediktori. Tačnost se može povećati ako predviđanje jedne grane
zavisi i od globalne istorije prethodnih grananja. U opštem slučaju, (m,n)-prediktor
koristi m bita globalne istorije da odabere jedan od 2m prediktora sa n-bitnim
brojačima. Tipičan primer je gshare prediktor: indeks se dobija XOR kombinacijom
niskih bitova adrese i globalne istorije, čime se dobija visoka tačnost uz minimalan
hardverski trošak.

Turnirski (hibridni) prediktori. Savremeniji turnirski prediktori kombinuju lo-
kalni i globalni pristup. Selektor, takođe zasnovan na 2-bitnom brojaču, adaptivno
bira „bolji“ prediktor za svaku granu, učeći iz prethodnih uspeha i neuspeha. Ova
strategija obezbeđuje stabilnu tačnost pri različitim obrascima grananja.

Označeni hibridi (TAGE). Najtačniji današnji prediktori su TAGE (engl. TAg-
ged GEometric) prediktori, koji koriste više tabela indeksiranih istorijama različite
dužine. Svaka tabela sadrži tag koji potvrđuje poklapanje obrasca i dodatno polje
korišćenosti koje eliminiše zastarele unose. Na taj način se postiže veća tačnost bez
eksponencijalnog rasta memorijskih zahteva.

Ele
ktr

on
ska

ver
zija

(20
25

)

13 1. Hardver savremenih računara

Povezanost tačnosti predikcije i performansi
Doprinos kontrolnih hazarda ukupnom prosečnom broju ciklusa po instruk-
ciji (eng. Cycles Per Instruction, CPI) može se aproksimirati izrazom:

C PI =C PIi deal +Pmi spr edi ct ·Penal t ybr anch

gde je Pmi spr edi ct verovatnoća pogrešne predikcije, a Penal t ybr anch broj
ciklusa izgubljenih po promašaju. Kod dubokih cevovoda ova vrednost može
dostići i desetine ciklusa.

Dakle, formula kaže: Stvarni CPI raste onoliko koliko često procesor pogreši u
predikciji skoka i koliko ga svaka pogrešna odluka košta u ciklusima.

Pri pokretanju programa, prediktor grananja obično se inicijalizuje jednostavnim
pravilom, dok tokom rada procesor „nauči“ tipične obrasce programa.

Savremene tehnike ubrzanja: višestruko izdavanje i dinamičko raspore-
đivanje. Savremeni procesori ne ograničavaju se na obradu jedne instrukcije po
ciklusu, već primenjuju tzv. višestruko izdavanje instrukcija (eng. multiple issue). U
takvoj arhitekturi, više nezavisnih instrukcija može se dekodirati i započeti u istom
taktu, čime se povećava propusnost cevovoda i efikasnije koriste funkcionalne je-
dinice. Da bi se ovo ostvarilo bez ručnog planiranja od strane kompajlera, procesor
koristi dinamičko raspoređivanje instrukcija (eng. dynamic scheduling), koje u toku
izvršavanja analizira zavisnosti između instrukcija i, kad god je moguće, izvršava ih
van redosleda definisanog programom. Time se izbegavaju zastoji, a paralelizam se
koristi u meri koju dopušta konkretni tok podataka. U kombinaciji sa predikcijom
skokova i promena imena registara, ove tehnike omogućavaju modernim superska-
larnim procesorima da u jednom ciklusu započnu i do desetak mikro-operacija,
čime se realni CPI približava idealnom, a cevovod održava stalno popunjenim.

1.1.3 Procesori sa više jezgara i paralelizam

Kako su fizička ograničenja (potrošnja energije, disipacija toplote i složenost
pronalaženja dodatnog instruction-level paralelizma) usporila dalji rast performansi
jednog jezgra, razvoj mikroprocesora prešao je u novu fazu: paralelizam na nivou
niti (Thread-Level Parallelism, TLP). Umesto povećanja brzine pojedinačne niti,
savremeni procesori ostvaruju veći ukupni učinak tako što istovremeno izvršavaju
više niti programa – bilo unutar istog procesa, bilo između više procesa.
Za razliku od ILP-a, koji pronalazi nezavisne instrukcije u okviru jedne programske
niti, TLP koristi više nezavisnih tokova izvršavanja. Svaka nit poseduje svoj pro-
gramski brojač i registre, ali može deliti memorijski prostor sa drugim nitima.
Time se omogućava paralelno izvođenje zadataka, bilo da potiču iz istog progra-
ma (npr. delovi petlje), bilo iz različitih aplikacija. Operativni sistem i kompajler
zajedno identifikuju i planiraju niti, dok hardver obezbeđuje njihovo istovremeno
izvršavanje na različitim jezgrima.

Danijela

Danijela

Danijela

Danijela

Danijela

Ele
ktr

on
ska

ver
zija

(20
25

)

1.1. Procesor (CPU) 14

ILP naspram TLP-a
ILP povećava brzinu izvršavanja jedne niti otkrivanjem nezavisnih instrukci-
ja, dok TLP povećava propusnost sistema izvođenjem više niti istovremeno.
ILP zahteva kompleksne tehnike predviđanja i dinamičkog raspoređivanja,
dok TLP koristi više fizičkih jezgara i niti da ostvari sličan efekat na višem
nivou apstrakcije.

Savremeni procesori sa više jezgara (multicore) kombinuju ILP i TLP: svako jezgro
interno koristi cevovod i višestruko izdavanje instrukcija, dok više jezgara zajedno
omogućava paralelno izvršavanje niti. Većina današnjih procesora (Intel, AMD,
ARM) su procesori sa deljenom memorijom (eng. shared-memory multiprocessori)
— više jezgara deli zajedničku fizičku memoriju i pristupa joj kroz hijerarhiju keševa
(privatni L1/L2 i deljeni L3).

Dva osnovna pristupa su:

✽ Simetrični (SMP) — sva jezgra imaju jednak pristup memoriji, pa je vreme
pristupa uniformno.

✽ Distribuirani (NUMA) — svako jezgro ima lokalnu memoriju sa bržim pri-
stupom, dok pristup memoriji drugih jezgara traje duže.

U realnim sistemima, komunikacija među jezgrima i sinhronizacija niti zahte-
vaju posebne mehanizme (npr. koherentnost keš memorije (eng. cache coherence)
i konzistentnost memorije (eng. memory consistency)). Iako arhitekture sa više
jezgara omogućavaju znatno veće performanse i energetsku efikasnost, ukupno
ubrzanje ograničeno je zakonom Amdala – čak i mali deo koda koji se ne može
paralelizovati može postati glavno usko grlo.

Primer: kombinovanje ILP i TLP
Procesori kao što su Intel Core, AMD Ryzen i ARM big.LITTLE ar-
hitekture kombinuju višestruko izdavanje instrukcija, više cevovoda i više
jezgara, uz podršku za više niti po jezgru (Simultaneous Multithreading –
SMT). Time se na nivou čipa ostvaruje paralelizam od nekoliko desetina
nezavisnih niti koje dele zajedničku memoriju i komunikacione magistrale.

1.1.4 Integracija grafičkih procesora i akceleratori
Savremeni procesorski sistemi sve češće kombinuju klasične procesore opšte

namene (CPU) sa specijalizovanim jedinicama za paralelno računanje, čineći tzv.
heterogenu arhitekturu. Najpoznatiji predstavnici ove klase su grafički procesori
(engl. Graphics Processing Unit, GPU) i akceleratori za neuronske mreže (TPU,
NPU, DNN). Iako su prvobitno bili namenjeni isključivo za grafičke operacije, kao
što su renderovanje 3D scena i obrada piksela, njihova visoko paralelizovana arhi-
tektura omogućava efikasno izvršavanje različitih proračuna nad velikim blokovima

Danijela

Ele
ktr

on
ska

ver
zija

(20
25

)

15 1. Hardver savremenih računara

podataka i zato su se pokazali izuzetno efikasnim i u naučnim, multimedijalnim
i aplikacijama gde se koristi mašinsko učenje, gde dominira paralelizam na nivou
podataka (eng. data-level parallelism, DLP).

Za razliku od CPU-a koji istovremeno izvršava mali broj kompleksnih niti, GPU
poseduje stotine ili hiljade jednostavnih jezgara koja istovremeno primenjuju istu
instrukciju nad različitim podacima – model poznat kao SIMD (Single Instruction,
Multiple Data) ili njegova varijanta SIMT (Single Instruction, Multiple Threads).
Svaka grupa niti, izvršava se sinhrono na skupu paralelnih aritmetičkih jedinica. Na
taj način GPU ostvaruje izuzetno visok stepen propusnosti (engl. throughput), što
ga čini pogodnim za računanja nad velikim nizovima podataka.

Programiranje GPU-a zasniva se na modelima kao što su CUDA (NVIDIA) i
OpenCL (otvoreni standard). U njima programer eksplicitno definiše broj niti i nji-
hovu organizaciju u blokove, dok hardver automatski upravlja njihovim rasporedom
i sinhronizacijom. Da bi GPU postigao punu efikasnost, niti u okviru jednog bloka
treba da pristupaju povezanim delovima memorije tj. niti u okviru jednog bloka ob-
rađuju uzastopne (susedne) elemente, čime se omogućava efikasno objedinjavanje
memorijskih zahteva (engl. memory coalescing).

U savremenim računarima CPU i GPU su povezani interfejsima velike propusno-
sti (npr. NVLink, PCIe) i mogu deliti jedinstveni adresni prostor zahvaljujući tzv.
ujedinjenoj memoriji (engl. unified memory). Ovaj pristup omogućava transparen-
tan prelazak podataka između CPU i GPU memorije, olakšavajući programiranje i
smanjujući potrebu za ručnim kopiranjem.

Razvoj veštačke inteligencije i dubokih neuronskih mreža doveo je do pojave
specijalizovanih procesora namenjenih obradi modela mašinskog učenja. Ovi pro-
cesori, poznati kao akceleratori za duboke neuronske mreže (engl. Deep Neural
Network Accelerators, DNN accelerators), projektovani su tako da efikasno izvrša-
vaju veliki broj jednostavnih operacija nad matricama – osnovni oblik računanja u
neuronskim mrežama.

Osobine DNN akceleratora
Tipične operacije koje se ponavljaju u neuronskim mrežama su množe-
nje matrica, konvolucije i nelinearne funkcije aktivacije (na primer, ReLU,
sigmoid, tanh). Zbog toga akceleratori poseduju veliki broj jednostavnih
aritmetičkih jedinica (ALU) i brze lokalne memorije koje smanjuju potrebu
za pristupom spoljašnjoj memoriji.

Najpoznatiji predstavnik ovih specijalizovanih procesora je Google Tensor Pro-
cessing Unit (TPU). TPU je dizajniran kao domen-specifičan akcelerator (Domain-
Specific Architecture, DSA) za fazu inferencije – odnosno korišćenje već istreniranih
neuronskih mreža. Srž TPU-a čini sistolički niz (engl. systolic array) od 256×256
8-bitnih aritmetičkih jedinica koje paralelno izvršavaju operacije množenja i sabira-
nja.

Ovakav dizajn omogućava postizanje izuzetne propusnosti i energetske efika-
snosti, jer se podaci kreću kroz mrežu aritmetičkih jedinica bez stalnog čitanja i

Danijela

Danijela

Danijela

Ele
ktr

on
ska

ver
zija

(20
25

)

1.2. Memorijska hijerarhija 16

pisanja iz spoljašnje memorije. TPU poseduje i posebne memorijske blokove – Uni-
fied Buffer i Weight Memory – koji omogućavaju da se aktivacije i težine modela
nalaze što bliže aritmetičkim jedinicama.

Prednosti specijalizovanog dizajna
Zahvaljujući ograničenom domenu primene i jednostavnom modelu izvrša-
vanja, TPU ostvaruje više reda veličine bolji odnos performansi i potrošnje
energije u poređenju sa opštim procesorima (CPU) i grafičkim procesorima
(GPU) pri izvođenju operacija potrebnih za neuronske mreže.

Pored TPU-a, slične akceleratore razvijaju i druge kompanije (npr. Intel Ner-
vana, NVIDIA Tensor Core, Apple Neural Engine), a svi slede sličnu filozofiju:
maksimalna paralelizacija uz minimalne troškove prenosa podataka. Takvi proce-
sori postaju osnovni element savremenih sistema koji kombinuju CPU, GPU i DNN
akceleratore u zajedničkom okviru za heterogeno računanje.

1.2 Memorijska hijerarhija

Druga centralna komponenta Fon Nojmanove arhitekture je glavna memorija,
u kojoj se čuvaju programi i podaci potrebni procesoru za izvršavanje instrukcija.
Sadržaj glavne memorije organizovan je kao linearni niz memorijskih lokacija, od-
nosno registara (najčešće bajtova), od kojih svaka ima svoju jedinstvenu adresu.
Pošto se pristup može vršiti proizvoljnim redosledom, ova memorija se naziva me-
morija sa slobodnim pristupom (engl. Random Access Memory, RAM). Osnovni
parametri memorija su kapacitet, vreme pristupa i protok.

U savremenim sistemima, razlika u brzini između procesora i glavne memorije
postala je toliko izražena da direktan pristup više nije moguć bez ozbiljnog uspore-
nja. Da bi se smanjio ovaj raskorak, uspostavlja se složena memorijska hijerarhija
koja povezuje memorije različitih brzina, cena i kapaciteta. Na vrhu hijerarhije na-
laze se registri procesora i keš memorije (engl. cache), dok su pri dnu sporije, ali
kapacitetnije memorije — glavna memorija, SSD uređaji i druge trajne memorije.
Procesor direktno komunicira samo s najbržim slojem, dok se podaci iz sporijih
nivoa učitavaju prema potrebi.

Princip memorijske hijerarhije
Kako se udaljavamo od procesora, cena memorije po bajtu se smanjuje, ka-
pacitet raste, ali vreme pristupa postaje duže. Hijerarhija memorija balansira
ove suprotne zahteve tako da sistem, u proseku, deluje gotovo jednako brzo
kao najbrža memorija u lancu.

Ele
ktr

on
ska

ver
zija

(20
25

)

17 1. Hardver savremenih računara

CPU
registri

Keš memorija

RAM

ROM/BIOS

USB diskovi

hard diskovi

CD, DVD, Blu-ray, magnetne trake

niža
cena/većikapacitet

veća
veličina/m

anja
brzina

viša
cena/m

anjikapacitet
m

anja
veličina/veća

brzina

pod
napajanjem

bez
napajanja

Slika 1.2: Pregled memorijske hijerarhije

Zid memorije (engl. memory wall)
Brzina procesora poslednjih decenija rasla je mnogo brže od brzine glavne
memorije. Ova sve veća razlika dovodi do situacije u kojoj procesor većinu
vremena provodi čekajući podatke iz memorije – što se naziva „zid me-
morije“. Keš memorije, predmemoriranje i preuređivanje pristupa podacima
nastoje da taj zid ublaže, ali ga ne mogu potpuno eliminisati.

Ova hijerarhijska organizacija čini osnovu svakog modernog računarskog sistema
i omogućava efikasno balansiranje između brzine, cene i energetskih zahteva. U
narednim odeljcima detaljnije se razmatraju ključni nivoi hijerarhije: registri, keš
memorije i glavna memorija.

1.2.1 Registri i keš memorije (L1–L3)

Najviši nivo memorijske hijerarhije čine registri – mala, izuzetno brza memorija
ugrađena direktno u procesorska jezgra. Predstavljaju najbržu memoriju jer se sve
aritmetičke i logičke operacije izvode upravo nad podacima koji se nalaze u njima.
Tipično ih ima od desetina do nekoliko stotina, sa latencijom od jednog takta.

Ele
ktr

on
ska

ver
zija

(20
25

)

1.2. Memorijska hijerarhija 18

Latencija je vreme od trenutka kada procesor zatraži podatak/instrukciju
do trenutka kada je zaista dobije; meri se u taktovima (eng. clock cycles)
ili nanosekundama. Pošto ALU ne može da nastavi bez operanada, niska
latencija najbližih nivoa memorije je presudna za performanse.

Odmah ispod registara u memorijskoj hijerarhiji nalazi se keš memorija (engl. cac-
he), organizovana u više nivoa: L1, L2 i L3, koji čuvaju kopije najčešće korišćenih
podataka i instrukcija. Keš je mala količina brze memorije (nekoliko hiljada puta
manjeg kapaciteta od glavne memorije; obično nekoliko megabajta) koja se po-
stavlja između procesora i glavne memorije u cilju ubrzanja rada računara. Cilj keš
memorije je da sakrije razliku u brzini između procesora i glavne memorije (RAM-a),
čija latencija može biti i stotine puta veća. Tipične vrednosti latencije su:

✽ L1: 2–4 ciklusa,

✽ L2: 10–20 ciklusa,

✽ L3: 30–50 ciklusa,

✽ Glavna memorija: 100–300 ciklusa.

Primer 1.4. Poređenje veličine i latencije

Nivo Tipična veličina Latencija (ciklusi) Primer arhitekture

L1 (instrukcioni/podatkovni) 32–64 KB 3–4 ARM Cortex-A53, Intel i7
L2 (privatni) 256 KB – 1 MB 10–15 ARM Cortex-A53, Intel i7
L3 (deljeni) 8–32 MB 30–50 Intel Core i7

Registri i keš memorije u procesoru najčešće se izrađuju u SRAM tehnolo-
giji (eng. Static Random Access Memory). Svaka ćelija SRAM memorije sastoji
se od šest tranzistora, bez kondenzatora. Glavne prednosti su veoma brz pristup
(reda pikosekundi do nanosekundi), nema potrebe za osvežavanjem (za razliku od
DRAM-a), pouzdan i stabilan signal. A glavni nedostaci su mnogo veća površina
po bitu (zato što ima 6 tranzistora umesto 1 kao kod DRAM memorije), samim
tim je skuplja i energetski zahtevnija po bitu.

Keš memorija je organizovana u blokove (ili linije) tipične veličine 32–128 baj-
tova. Svaki blok sadrži podatke koji se često koriste zajedno, što omogućava isko-
rišćavanje prostorne lokalnosti. Kada se blok učita, on se smešta u odgovarajuću
keš liniju. Adresiranje u keš memoriji zasniva se na podeli adrese na tri polja: [tag
| index | offset]. Polje index određuje u koji deo keša može biti smešten
traženi blok, dok tag služi za proveru da li se upravo taj blok nalazi u tom delu
keša. Polje offset označava tačnu poziciju bajta ili reči unutar bloka.

Na osnovu toga razlikujemo:

✽ direktno mapirani keš – svaka adresa ima jedno moguće mesto,

Ele
ktr

on
ska

ver
zija

(20
25

)

19 1. Hardver savremenih računara

✽ n-asocijativni keš – blok može biti u bilo kom od n mesta unutar jednog
dela keša,

✽ potpuno asocijativni keš – blok može biti bilo gde u kešu.

Pre pristupa glavnoj memoriji procesor uvek prvo pristupa kešu. Ako traženi
podatak tamo postoji, u pitanju je tzv. pogodak keša (engl. cache hit) i podatak
se dostavlja procesoru. Ako se podatak ne nalazi u kešu, u pitanju je tzv. promašaj
keša (engl. cache miss) i podatak se iz glavne memorije prenosi u keš zajedno sa
određenim brojem podataka koji za njim slede (glavni faktor brzine glavne memorije
je njeno kašnjenje i praktično je svejedno da li se prenosi jedan ili više podataka
jer je vreme prenosa malog broja bajtova mnogo manje od vremena kašnjenja).
Motivacija ovog pristupa je u tome što programi često pravilno pristupaju podacima
(obično redom kojim su podaci smešteni u memoriji), pa je velika verovatnoća da
će se naredni traženi podaci i instrukcije naći u keš-memoriji.

Kada dođe do promašaja (miss), keš mora odlučiti koji blok će biti zamenjen
novim podacima iz nižeg nivoa memorije. Ovaj izbor sledi određenu politiku za-
mene blokova. Najčešće se koristi politika najduže nekorišćenog bloka (engl. Least
Recently Used — LRU), koja pretpostavlja da će blok koji je najduže bio neaktivan
verovatno i ubuduće biti najmanje potreban. Zbog hardverske složenosti potpune
implementacije LRU pristupa, u praksi se često primenjuju približne varijante, po-
put pseudo-LRU algoritma, koji donosi gotovo isti efekat uz manji broj registara i
logičkih operacija.

Upis podataka u keš takođe može slediti različite politike upisa. Naime, keš
nije posebna memorija, već brza kopija dela glavne memorije (RAM), čiji je za-
datak da ubrza pristup često korišćenim podacima; zato je neophodno održavati
konzistentnost između keša i glavne memorije, kako bi svi delovi sistema videli is-
te vrednosti podataka. Procesor stalno čita i upisuje podatke. Kada upisuje (npr.
menja neku promenljivu), ta promena prvo ide u keš, jer je to najbrža memorija i
nalazi se odmah uz procesor. Ali, te izmene tada još nisu zapisane u glavnu me-
moriju (RAM), koja je mnogo sporija. Postavlja se pitanje: kada i kako ažurirati
glavnu memoriju da bi svi nivoi imali isti sadržaj?

✽ pisanje-prolazom (engl. write-through) – svaka promena u kešu istovremeno
se upisuje i u niži nivo memorije. Ovaj pristup pojednostavljuje održavanje
konzistentnosti podataka, ali povećava broj pristupa memoriji.

✽ pisanje-na-izbacivanje (engl. write-back) – izmene se najpre upisuju samo
u keš, a zatim se, prilikom izbacivanja bloka iz keša, sadržaj ažurira u nižem
nivou. Takvi blokovi označavaju se „zastavicom prljavosti” (dirty bit). Ova
politika smanjuje saobraćaj prema memoriji, ali zahteva složeniju kontrolu da
bi se očuvala konzistentnost podataka jer ako dođe do kvara, može se desiti
da neki podaci još nisu sinhronizovani.

Danijela

Ele
ktr

on
ska

ver
zija

(20
25

)

1.2. Memorijska hijerarhija 20

Primer 1.5
ARM Cortex-A53. Koristi dvo-nivojski keš: L1 od 32 KB za instrukcije
i 32 KB za podatke, te objedinjeni L2 do 2 MB. L1 je virtuelno adresiran,
i koristi politiku pisanje-prolazom sa alokacijom pri upisu. Tipična kazna
promašaja iznosi 10–15 ciklusa ka L2 i oko 100 ciklusa do glavne memorije.

Intel Core i7. Sadrži tri nivoa keša: L1 (64 KB ukupno po jezgru), L2
(256 KB po jezgru) i L3 (deljeni, 8–16 MB). Svi nivoi su neblokirajući
(non-blocking), tj. podržavaju više istovremenih upisa. Politika upisa je
pisanje-na-izbacivanje. Kod procesora Intel Core i7-6700, latencija pristupa
iznosi približno 4 ciklusa za L1, 12 ciklusa za L2, 42 ciklusa za L3 i oko 200
ciklusa za glavnu memoriju, što jasno ilustruje razliku brzina u memorijskoj
hijerarhiji.

Optimizacije keša
Performanse keš memorija unapređuju se nizom hardverskih i softverskih
tehnika koje smanjuju vreme pristupa podacima i broj promašaja:

✽ višestruki nivoi keša(L1 privatni, L2 privatni, L3 deljeni),

✽ predučitavanje podataka (prefetching),

✽ višestruke banke i paralelni pristup,

✽ i politika koherentnosti (cache coherence).

Višestruki nivoi keša (L1, L2, L3) omogućavaju da se kombinovanjem manjih
i bržih keševa sa većima i sporijima postigne ravnoteža između brzine i kapaciteta.
Tipično su L1 keševi privatni za svako jezgro, dok je L3 deljeni resurs.

Predučitavanje podataka koristi predviđanje budućih pristupa memoriji na
osnovu obrasca izvršavanja programa, pa se podaci dovlače u keš pre nego što ih
procesor zaista zatraži, čime se smanjuje broj promašaja.

Višestruke banke i paralelni pristup omogućavaju da keš istovremeno opsluži
više zahteva, čime se povećava efektivna propusnost i iskorišćenost procesora.

Politike koherentnosti keša obezbeđuju da svi procesori u višejezgarnim si-
stemima u svakom trenutku vide iste vrednosti podataka, čime se održava konzi-
stentnost između kopija u različitim keševima.

1.2.2 Glavna memorija, SSD i NVM

Glavna memorija čuva sve podatke i programe koje procesor izvršava. Mali deo
glavne memorije čini ROM (engl. read only memory) – nepromenljiva memorija
koja sadrži osnovne programe koji služe za kontrolu određenih komponenata ra-

Ele
ktr

on
ska

ver
zija

(20
25

)

21 1. Hardver savremenih računara

čunara (na primer, osnovni ulazno-izlazni sistem BIOS). Znatno veći deo glavne
memorije čini RAM – privremena promenljiva memorija sa slobodnim pristupom.
Terminološki, podela glavne memorije na ROM i RAM nije najpogodnija jer ove
vrste memorije nisu suštinski različite — nepromenljivi deo (ROM) je takođe me-
morija sa slobodnim pristupom (RAM). Da bi RAM memorija bila što brža, izrađuje
se uvek od poluprovodničkih (elektronskih) elemenata. Danas se uglavnom reali-
zuje kao sinhrona dinamička memorija (SDRAM). To znači da se prenos podataka
između procesora i memorije vrši u intervalima određenim otkucajima sistemskog
sata (često se u jednom otkucaju izvrši nekoliko prenosa). Dinamička memorija je
znatno jeftinija i jednostavnija, ali zato sporija od statičke memorije od koje se
obično gradi keš.

Brza memorija je skupa i energetski „skuplja“ po bitu, dok je spora memorija
jeftinija, ali sa većom latencijom. Hijerarhija memorija kombinuje više tehnologija
tako da sistem deluje kao veliki i brz, uz cenu i potrošnju blisku donjim nivoima.
Ključ je lokalnost (vremenska i prostorna): gornji nivoi (keševi, registri) omoguća-
vaju obezbeđuju brzinu, a donji nivoi (DRAM, SSD) obezbeđuju kapacitet.

DRAM. Dinamička memorija sa slobodnim pristupom (engl. Dynamic Random
Access Memory, DRAM) predstavlja osnovnu radnu memoriju savremenih raču-
nara. Naziv „dinamička“ potiče od činjenice da se svaka informacija u DRAM čipu
čuva kao električni napon u kondenzatoru koji vremenom „curi“ i mora periodično
da se osvežava (engl. refresh). Ova osobina čini DRAM volatilnom – njen sadr-
žaj nestaje čim se izgubi napajanje. Ipak, zahvaljujući jednostavnoj strukturi ćelije
(samo jedan tranzistor i jedan kondenzator), DRAM postiže izuzetno visoku gu-
stinu podataka i povoljnu cenu po bitu, zbog čega dominira kao glavna memorija
sistema.

Osnovne osobine DRAM tehnologije
✽ Latencija i propusni opseg. Pristup jednoj lokaciji traje desetine

nanosekundi; nakon inicijalnog čitanja, prenosi se čitav niz susednih
reči u tzv. rafalu (engl. burst), čime se znatno povećava propusni
opseg.

✽ Osvežavanje i volatilnost. Svaka ćelija mora se osvežiti nekoliko
stotina puta u sekundi. Tokom tog procesa memorijski kontroler pri-
vremeno blokira pristupe, što uvodi dodatno kašnjenje i potrošnju
energije.

✽ Energetski profil. DRAM troši energiju i dok je neaktivna: deo po-
trošnje odlazi na osvežavanje (tzv. statika), a deo na same operacije
čitanja i pisanja (dinamička potrošnja). Moderni standardi kao što su
DDR4 i DDR5 snižavaju radni napon, uvode režime “spavanja” kako
bi se smanjila ukupna potrošnja energije.

Danijela

Danijela

Danijela

Danijela

Ele
ktr

on
ska

ver
zija

(20
25

)

1.2. Memorijska hijerarhija 22

Savremeni DRAM moduli organizovani su u blokove i redove, što omogućava
da se više pristupa izvršava preklopljeno i time poveća propusni opseg memorije.
Kod tipičnih desktop procesora, vreme pristupa DRAM-u iznosi oko 60–100 ns, što
je nekoliko desetina puta sporije od pristupa kešu drugog nivoa, a više stotina puta
sporije od registara procesora. Upravo ta razlika u brzini između procesora i glavne
memorije jedan je od glavnih razloga postojanja složene memorijske hijerarhije.

Uloga DRAM-a u hijerarhiji
Glavna memorija je središnji radni prostor računara – ona čuva sve programe
i podatke koji su trenutno aktivni. Procesor ne pristupa direktno sporijim
uređajima kao što su SSD ili disk, već se svi podaci pre izvršavanja moraju
preneti u DRAM. Što je manji broj promašaja u kešu (L3→DRAM), to je
niže prosečno vreme pristupa (eng. Average Memory Access Time, AMAT)
i manja potrošnja energije.

SSD (Flash memorija) predstavlja nevolatilno skladište podataka zasno-
vano na tehnologiji NAND tranzistora. Za razliku od DRAM-a, SSD čuva sadržaj i
bez napajanja, ali mu je latencija pristupa višestruko veća – meri se u mikrose-
kundama. Upis u SSD ne vrši se nad pojedinačnim bajtovima, već nad stranicama
i blokovima, koji se pre svakog upisa moraju obrisati. Upravo zato je neophodan
kontroler koji obavlja složene funkcije: mapiranje fizičkih adresa, keširanje poda-
taka i ravnomerno raspoređivanje ciklusa pisanja kako bi se produžio vek trajanja
memorije.

U pogledu potrošnje, SSD je izuzetno štedljiv u mirovanju, dok su operacije
pisanja energetski skuplje. Zahvaljujući odsustvu mehaničkih delova, SSD je daleko
pouzdaniji i energetski efikasniji od klasičnih tvrdih diskova. Njegova je osnovna
uloga trajno čuvanje podataka, a ne zamena za DRAM, jer i dalje poseduje veću
nasumičnu latenciju i ograničen broj ciklusa upisa.

NVM (nevolatilne memorije srednjeg sloja). Predstavljaju tehnologije koje
popunjavaju jaz između brze, ali volatilne DRAM memorije i trajne, ali sporije Flash
memorije (SSD). One kombinuju osobine obe grupe – brz pristup u nanosekundama
do mikrosekundi i mogućnost trajnog čuvanja podataka bez napajanja. NVM koristi
fizičke ili magnetne promene u materijalu koje ostaju i bez napajanja.

Najpoznatiji predstavnici su Intel Optane (zasnovan na 3D XPoint tehnologiji),
PCM (phase-change memory) i MRAM (magnetoresistive RAM). Za razliku od
NAND Flash-a, mnoge NVM tehnologije podržavaju adresiranje po bajtu, što
omogućava direktan pristup bez posredovanja datotečnog sistema. Latencije su
tipično nekoliko mikrosekundi – znatno niže od SSD-a, ali i dalje veće od DRAM-
a.

Ove memorije mogu raditi u različitim režimima: kao brzi disk (blokovski ure-
đaj), kao proširenje radne memorije, ili kao trajna radna memorija u kojoj
podaci preživljavaju i nakon gašenja sistema.

Danijela

Ele
ktr

on
ska

ver
zija

(20
25

)

23 1. Hardver savremenih računara

Energetski posmatrano, NVM ne zahteva osvežavanje, pa troši manje ener-
gije u stanju mirovanja. Pristupi su skuplji od DRAM-a, ali znatno efikasniji od
NAND Flash-a po obavljenoj korisnoj operaciji. Uvođenjem ovog sloja u hijerarhiju
memorije, smanjuje se kazna promašaja ka sporijem SSD-u, a time i ukupna
potrošnja energije po izvršenom zadatku.

Od registara do SSD-a: odnos brzine, kapaciteta i cene
Nivo Veličina Latencija Trajnost Cena/bit Napomena
Registri ∼KB 0.2–0.5 ns ne visoka u jezgru, višestruki portovi
L1/L2/L3 (SRAM) desetine MB 1–4 / 4–12 / 30–50 ns ne srednja AMAT zavisi od hit-rate
DRAM (glavna) 10–100+ GB 50–100 ns ne niža osvežavanje, bankovi/kanali
NVM (Optane/PCM) GB–desetine GB 0.3–2 µs da niža most DRAM↔SSD
SSD (NAND) 0.5–10+ TB 50–150 µs da niža sekvencijalno vrlo brzo

Virtuelna memorija. Predstavlja sloj apstrakcije između fizičke memorije raču-
nara i programa koji se izvršavaju. Ona omogućava da svaki proces “ima utisak”
da raspolaže sopstvenim, neprekidnim prostorom memorije, iako se on u stvarno-
sti deli između više programa i može biti raspoređen na različite fizičke lokacije.
Virtuelnom memorijom upravlja operativni sistem, koji po potrebi premešta de-
love podataka između glavne memorije i trajnog skladišta. Na taj način se postiže
veća fleksibilnost, zaštita i efikasnije korišćenje fizičkih resursa. Detaljniji prikaz
mehanizama virtuelne memorije biće dat u poglavlju Sistemski softver.

1.3 Sistemska magistrala i komunikacija komponenti

Performanse savremenih računarskih sistema ne zavise samo od brzine proce-
sora, već i od načina na koji su komponente međusobno povezane. Procesor,
memorija i ulazno–izlazni uređaji moraju stalno da razmenjuju podatke, pa je od
efikasnosti te komunikacije direktno zavisila i brzina celog sistema.

Magistrala (engl. bus) je zajednički komunikacioni kanal preko koga više ure-
đaja može da prenosi podatke, adrese i upravljačke signale. Kada je računar imao
samo nekoliko komponenti, takvo deljenje jedne zajedničke linije bilo je jednostav-
no i ekonomično rešenje. Da bi se izbegli sudari, magistrala koristi mehanizam
arbitraže kojim se odlučuje koji uređaj u datom trenutku ima pravo prenosa.

Uloga magistrale je, dakle, da obezbedi zajednički jezik komunikacije između
svih delova računara: procesor putem nje čita podatke iz memorije, piše rezultate
nazad ili komunicira sa spoljnim uređajima. Takav princip rada činio je osnovu svih
klasičnih računara, zasnovanih na arhitekturi fon Nojmana.

Kako su sistemi postajali složeniji, a broj uređaja rastao, zajednička magistrala
postala je usko grlo. Više uređaja je moralo da čeka svoj red na prenos, pa su
performanse opadale. Savremene arhitekture zato uvode preklopljene organizaci-
je, gde svaka komponenta ima sopstvenu vezu prema centralnom delu sistema.

Danijela

Danijela

Danijela

Ele
ktr

on
ska

ver
zija

(20
25

)

1.3. Sistemska magistrala i komunikacija komponenti 24

Takva mreža međupovezivanja (engl. interconnection network) obezbeđuje više
paralelnih kanala, veću propusnost i manju latenciju.

Osnovni pojmovi

✽ Propusnost (engl. bandwidth) – količina podataka koja se može pre-
neti u jedinici vremena. Zavisna je od širine magistrale (broja bitova
koji se prenose istovremeno) i od radnog takta (učestalosti prenosa).
Aproksimativno, za sinhrone paralelne linije:

B = w · f

8

gde je w širina (u bitovima), a f radni takt. Na primer: 64-bitna
magistrala na 100 MHz daje 64·100·106

8 ≈ 0,8 GB/s (idealno). Stvarna
propusnost je obično manja, jer deo vremena odlazi na upravljačke
signale i arbitražu.

✽ Latencija (engl. latency) – vreme potrebno da podatak stigne od
izvora do odredišta. Na latenciju utiču kašnjenja u električnim vo-
dovima, vreme obrade u uređajima i eventualno čekanje na pristup
magistrali. Dok propusnost pokazuje „koliko“, latencija govori „koliko
brzo“ — i oba parametra moraju biti usklađena za postizanje opti-
malnih performansi.

✽ Arbitraža – mehanizam kojim se odlučuje koji uređaj u datom tre-
nutku ima pravo da koristi magistralu. U jednostavnim sistemima to
može biti centralni arbitar (npr. procesor), dok složeniji sistemi ko-
riste distribuisanu arbitražu gde svaki uređaj učestvuje u dogovoru o
redu pristupa. Cilj arbitraže je da obezbedi pravedan i efikasan prenos
podataka bez konflikata i gubitaka.

✽ Topologija – način na koji su komponente fizički povezane. Kod
klasične magistrale sve komponente dele jedan zajednički vod, dok
savremene arhitekture koriste višestruke, paralelne veze i preklopljene
mreže. O različitim topologijama (prsten, zvezda, mreža i dr.) detalj-
nije će biti reči u posebnom poglavlju o računarskim mrežama.

1.3.1 Sistemske magistrala i PCI Express (PCIe)
U starijim računarima komunikacija između procesora, memorije i uređaja oba-

vljala se putem klasične sistemske magistrale (npr. standardi PCI ili AGP). Svi
uređaji delili su isti komunikacioni kanal, pa je bilo neophodno da sistem određuje
koji uređaj u datom trenutku ima pravo pristupa. Takav pristup je jednostavan,
ali postaje ozbiljno ograničenje kada broj uređaja i količina razmenjenih podataka
poraste.

Danijela

Ele
ktr

on
ska

ver
zija

(20
25

)

25 1. Hardver savremenih računara

A) Klasična deljena magistrala

CPU Glavna memorija

GPU Disk Mreža USB

B) PCIe point-to-point

CPU + IMC Glavna memorija

PCIe RC / Switch

GPU NVMe SSD Mreža USB

Slika 1.3: (A) Klasična deljena magistrala sa arbitražom i jednim zajedničkim kana-
lom; (B) PCIe point-to-point topologija sa root-kompleksom/switch-em, paralelnim
vezama i DMA prenosima.

Savremeni sistemi zato uvode PCI Express (PCIe), naslednika klasične magi-
strale, koji koristi direktne digitalne veze između parova uređaja (eng. point-
to-point). Svaka komponenta ima sopstveni kanal ka centralnom delu sistema (pro-
cesoru ili čipsetu), pa se prenosi podataka mogu odvijati istovremeno i nezavisno.
Time se izbegavaju zagušenja i povećava ukupna propusnost sistema.

Dodatno, savremeni uređaji povezani preko PCIe standarda mogu samostalno
da razmenjuju podatke sa glavnom memorijom korišćenjem direktnog pristupa
memoriji (DMA). Na taj način procesor ne mora da posreduje u svakom prenosu,
čime se oslobađa za druge zadatke i smanjuje ukupno vreme obrade. Ova arhi-
tektura omogućava izuzetno brzu komunikaciju sa uređajima koji zahtevaju visok
protok podataka, poput grafičkih procesora, NVMe diskova ili mrežnih adaptera.

1.3.2 Čipset i kontroleri
Savremene matične ploče više nisu zasnovane na jednoj centralnoj magistrali,

već na nizu specijalizovanih kontrolera koji povezuju procesor, memoriju i uređaje.
Ulogu koordinacije ima čipset, odnosno skup logičkih čipova koji upravljaju ko-
munikacijom između procesora, glavne memorije, grafičkog podsistema, skladišta
podataka i perifernih uređaja.

Danijela

Danijela

Ele
ktr

on
ska

ver
zija

(20
25

)

1.4. Ulazno–izlazni podsistem 26

U ranijim generacijama arhitekture razlikovala su se dva osnovna dela čipseta:
severni most (engl. northbridge), koji je povezivao procesor i memoriju, i južni
most (engl. southbridge), koji je služio za sporije I/O uređaje (USB, SATA, PCI).
Danas su te funkcije objedinjene: memorijski kontroler i PCIe konekcije često su
integrisani direktno u procesor, dok čipset preuzima samo pomoćne funkcije –
povezivanje dodatnih uređaja, mrežnih interfejsa i upravljanje napajanjem.

1.4 Ulazno–izlazni podsistem

Ulazno–izlazni (I/O) podsistem predstavlja ključnu komponentu savremenih
računarskih sistema, jer omogućava komunikaciju između procesora, memorije i
spoljašnjih uređaja. Razvoj interneta i servisa koji se oslanjaju na masovno skladi-
štenje i mrežnu povezanost pomerio je fokus arhitekture računara sa računanja ka
komunikaciji i skladištenju informacija.

I/O podsistem

I/O podsistem obuhvata uređaje (diskove, tastature, mrežne adaptere, gra-
fičke kartice), interfejse i kontrolere koji upravljaju prenosom podataka iz-
među uređaja i glavne memorije.

I/O uređaji su fizički elementi sistema koji obavljaju ulazne ili izlazne operacije.
Zbog raznolikosti brzina, formata podataka i protokola komunikacije, svaki uređaj
poseduje odgovarajući kontroler – specijalizovani procesor koji posreduje između
uređaja i magistrale sistema.

Tipično, procesor ne komunicira direktno sa uređajem, već šalje komande kon-
troleru. Kontroler prevodi te komande u niz električnih signala prilagođenih uređaju,
nadgleda izvršenje i obaveštava procesor putem prekida kada je operacija završena
(više o prekidima u sekciji Sistemski softver).

Primer: Disk kontroler prevodi zahteve operativnog sistema (npr. čitanje sek-
tora 12345) u konkretne mehaničke operacije – pozicioniranje glave i čitanje
odgovarajuće staze. Moderni kontroleri uključuju i keš memoriju i algoritme za
optimizaciju redosleda komandi.

I/O sistem se često modeluje kao hijerarhija slojeva: na vrhu su aplikacije i
operativni sistem, ispod njih drajveri i kontroleri, a na dnu fizički uređaji. Ovakva
slojevita organizacija omogućava apstrakciju hardvera i modularnost u projektova-
nju.

Danijela

Ele
ktr

on
ska

ver
zija

(20
25

)

27 1. Hardver savremenih računara

1.4.0.1 Direktan pristup memoriji (DMA)

Da bi se smanjilo opterećenje procesora tokom prenosa podataka, koristi se
mehanizam direktnog pristupa memoriji (eng. Direct Memory Access – DMA).
Kod standardnog I/O prenosa procesor bi morao da pročita svaki bajt sa uređaja
i upiše ga u memoriju, što je neefikasno. DMA kontroler preuzima ovu ulogu:
on samostalno kopira blokove podataka između uređaja i memorije, dok procesor
nastavlja sa izvršavanjem drugih instrukcija.

Kada DMA prenos završi, kontroler generiše prekid da bi obavestio procesor
da su podaci spremni. Ovakav pristup značajno povećava propusnost sistema i
omogućava preklapanje I/O i računanja.

DMA omogućava istovremeno izvršavanje procesorskih operacija i prenosa
podataka, čime se postiže veća iskorišćenost magistrale i manja latencija
I/O operacija.

1.4.0.2 Standardi i interfejsi: USB, PCIe, NVMe

Zahvaljujući standardizovanim I/O interfejsima, uređaji različitih proizvođača
mogu da rade zajedno i da ostvaruju visok protok podataka.

✽ USB (Universal Serial Bus) je serijski standard koji povezuje periferne
uređaje male i srednje brzine (tastature, miševe, kamere, memorijske stikove).
Moderni standardi kao USB 3.2 i USB4 dostižu brzine prenosa i do 40 Gb/s
i podržavaju napajanje uređaja.

✽ PCI Express (PCIe) je glavni interfejs za visoko-propusne uređaje (grafičke
kartice, SSD diskove, mrežne adaptere). PCIe koristi višekanalnu arhitekturu
koja omogućava paralelne prenose podataka sa malom latencijom.

✽ NVMe (Non-Volatile Memory Express) je protokol razvijen specijalno za
SSD uređaje zasnovane na flash memoriji. Za razliku od SATA ili SCSI pro-
tokola, NVMe koristi PCIe magistralu i omogućava hiljade paralelnih redova
komandi, čime dramatično smanjuje latenciju pristupa podacima.

Kombinacijom PCIe i NVMe standarda postignute su performanse koje omo-
gućavaju višestruko brži pristup u odnosu na tradicionalne magnetne diskove –
latencije su reda mikrosekundi i propusnost je veća od 5 GB/s po uređaju.

Pouzdanost informacija se ostvaruje čuvanjem podataka u više kopija ili uz
dodatne kontrolne podatke koji omogućavaju oporavak ako dođe do greške, kao
kod RAID organizacija diskova, i upotrebom nevolatilnih medijuma (SSD, NVMe).
Operativni sistem upravlja redovima komandi i prioritizacijom pristupa, dok DMA
i kontroleri obezbeđuju efikasan fizički prenos.

Danijela

Ele
ktr

on
ska

ver
zija

(20
25

)

1.5. Integracija hardverskih podsistema 28

Savremeni I/O podsistem nije samo skup perifernih uređaja, već složena
arhitektura koja povezuje procesor, memoriju, magistralu i spoljašnji svet
kroz standardizovane, paralelne i pouzdane komunikacione protokole.

1.5 Integracija hardverskih podsistema

Računarski sistem funkcioniše kao celina zahvaljujući složenoj integraciji kom-
ponenti na matičnoj ploči (engl. motherboard). Ona predstavlja fizičku osnovu
sistema i obezbeđuje električno napajanje, komunikacione puteve i sinhronizaciju
između procesora, memorije, grafičkog podsistema i ulazno–izlaznih uređaja.

Centralnu ulogu u koordinaciji komponenti ima čipset, koji se istorijski sastojao
od severnog i južnog mosta. Savremeni procesori preuzeli su deo funkcionalnosti
čipseta: kontroler memorije i PCIe interfejs sada su integrisani direktno u CPU, dok
čipset na matičnoj ploči (često nazvan Platform Controller Hub, PCH) upravlja
perifernim uređajima, mrežnim i USB kontrolerima.

Moderni računari ne pokreću se odmah operativnim sistemom, već prolaze kroz
proces inicijalizacije kojim upravlja ugrađeni programski kod, firmware ugrađen u
matičnu ploču. U starijim sistemima to je bio BIOS (Basic Input/Output System),
dok je u novim sistemima zamenjen naprednijim UEFI firmware (Unified Exten-
sible Firmware Interface).

UEFI
UEFI predstavlja savremeni sloj između hardvera i operativnog sistema: on
prepoznaje komponente, vrši testiranje, učitava učitavača operativnog siste-
ma (eng. boot loader) i omogućava sigurno pokretanje sistema (eng. Secure
Boot).

BIOS je monolitan i zatvoren sistem – skup rutinskih procedura u ROM-u, čiji
je zadatak bio da izvrši POST (Power-On Self Test) i pokrene operativni sistem.
Korisnik i programeri nisu mogli da mu dodaju funkcionalnosti: nije imao drajvere
koje bi se lako ažurirali, niti podršku za mrežu, grafički interfejs ili velike diskove
(više od 2 TB).

Kod klasičnih računara iz 80-ih i 90-ih, BIOS je bio upisan u ROM čip direktno
na matičnoj ploči. To znači:

✽ sadržaj BIOS-a je fizički „urezan“ u čip,

✽ ažuriranje nije bilo moguće ili je zahtevalo fizičku zamenu čipa,

✽ kod je bio vrlo mali (obično 64 – 512 KB) i pisan u čistom asembleru.

UEFI je modularan i programabilan – može da koristi mrežne drajvere, grafički
interfejs, pa čak i jednostavne aplikacije pre nego što se operativni sistem pokrene.
Na taj način on obezbeđuje veću fleksibilnost i sigurnost u odnosu na tradicionalni
BIOS.

Danijela

Ele
ktr

on
ska

ver
zija

(20
25

)

29 1. Hardver savremenih računara

UEFI se i dalje fizički nalazi na matičnoj ploči, ali ne više u ROM-u, već u
malom fleš čipu (SPI flash ROM) koji se može prepisivati. To znači:

✽ UEFI je i dalje „ugrađen“ – deo ploče – ali se može ažurirati softverski,

✽ čip je tipično veličine 8 – 16 MB,

✽ proizvođač (ili korisnik) može izvršiti firmware update (tzv. „flešovanje“ BIOS-
a/UEFI-ja).

Kada se računar uključi:

✽ Procesor počinje da izvršava kod iz te male flash memorije (adresira se di-
rektno).

✽ UEFI pokreće osnovne servise, učitava drajvere za PCIe, SATA, USB itd.

✽ Zatim pronalazi i pokreće učitavač operativnog sistema (eng. boot loader)
sa diska (ili mreže).

Integracija svih ovih slojeva – fizičkih, logičkih i upravljačkih – predstavlja osno-
vu savremenog računarskog sistema. Operativni sistem preuzima kontrolu tek nakon
što UEFI završi inicijalizaciju i preda mu izvršavanje, čime počinje rad softverskog
sloja sistema.

CPU
jezgra, keš, IMCRAM RAM

GPU
PCIe x16

NVMe SSD
M.2 / PCIe x4

Čipset (PCH)

SATA portovi USB kontroler Ethernet kontroler

UEFI firmware
SPI flash

mem. kanal mem. kanal

PCIe x16 PCIe x4

DMI/PCIe link

SPI

inicijalizacija

Slika 1.4: Minimalna šema integracije: CPU sa integrisanim memorijskim kontrole-
rom (IMC), RAM, PCIe veze ka GPU/NVMe, veza ka PCH (DMI/PCIe), periferni
kontroleri i UEFI firmware u SPI flash memoriji.

Ele
ktr

on
ska

ver
zija

(20
25

)

1.6. Trendovi u savremenim arhitekturama 30

1.6 Trendovi u savremenim arhitekturama

Energetska potrošnja danas predstavlja jedan od ključnih izazova u dizajnu
savremenih računarskih sistema. Snaga se mora dovesti i ravnomerno raspodeliti
unutar čipa, a zatim efikasno odvesti u vidu toplote. Razlikuju se tri fundamentalna
parametra: vršna snaga (engl. peak power), koja označava maksimalno opterećenje
napajanja; termička projektna snaga (Thermal Design Power, TDP), koja definiše
zahteve sistema hlađenja; i srednja snaga, koja zavisi od tipičnog opterećenja. Ipak,
za realnu procenu efikasnosti presudniji je pojam energije po zadatku – proizvod
prosečne snage i vremena izvršavanja. U praksi, procesor koji troši više snage može
biti energetski povoljniji ako posao obavi znatno brže. Pošto su vrednosti napona
poslednjih godina praktično „zakočene“ na oko 1 V, rast radnog takta se usporio,
a fokus je premešten na energetsku efikasnost i paralelizam.

Tehnike upravljanja energijom
Najvažnije savremene tehnike uključuju:

✽ isključivanje takta neaktivnim jedinicama (eng. clock gating),

✽ dinamičko prilagođavanje napona i frekvencije (eng. Dynamic Voltage
and Frequency Scaling, DVFS),

✽ isključivanje napajanja neaktivnim delovima čipa (power gating), kao
i strategiju trka-do-zaustavljanja (eng. race-to-halt), kojom se zada-
tak izvršava maksimalnom brzinom, a zatim sistem prelazi u stanje
mirovanja radi uštede energije.

Značajan udeo ukupne potrošnje dolazi i iz statičke energije izazvane curenjem
struje kroz tranzistore, naročito u velikim keš memorijama tipa SRAM. Zbog toga
savremeni čipovi uvode višestruke energetske domene, koji omogućavaju potpuno
isključivanje delova procesora kada nisu u upotrebi.

SoC (System-on-Chip) arhitekture integrišu procesorska jezgra, grafiku, memo-
rijski kontroler, mrežni interfejs i druge komponente u jedinstveni čip. Ovaj pristup
smanjuje kašnjenja i potrošnju energije, jer se komunikacija odvija unutar čipa, bez
potrebe za spoljnim magistralama.

Pored logičke potrošnje, presudnu ulogu ima i memorijska hijerarhija: pristup
glavnoj memoriji (DRAM) troši i do 104 puta više energije nego operacija sabiranja
u aritmetičko–logičkoj jedinici. Ova razlika objašnjava zašto je lokalna povezanost
podataka i upotreba bafera ključna za energetski efikasne arhitekture.

Ele
ktr

on
ska

ver
zija

(20
25

)

31 1. Hardver savremenih računara

Paradigma energetske efikasnosti
Sa stanovišta projektovanja, glavni cilj postaje minimizacija energije po za-
datku (eng. energy per task) i maksimizacija performansi po vatu (engl. per-
formance per watt). Kako više nije moguće sve tranzistore istovremeno dr-
žati aktivnim bez prekoračenja termičkog limita, značajan deo čipa ostaje
neaktivan – fenomen poznat kao tamni silicijum (engl. dark silicon). Ovo
je dovelo do porasta upotrebe domen-specifičnih akceleratora kao što su
TPU, NPU i Tensor Cores, koji omogućavaju visok stepen paralelizma uz
minimalnu potrošnju energije.

U celini, dalji razvoj procesora sve manje zavisi od povećanja takta, a sve više od
heterogenosti, specijalizacije i štedljive upotrebe podataka. Energetska efikasnost
je postala novo merilo napretka, a ne samo brzina izvršavanja.

Pitanja i zadaci za vežbu

Pitanje 1.1. Koje tri osnovne komponente čine tipičan računar prema Fon Noj-
manovom modelu?

Pitanje 1.2. Koje su osnovne funkcije aritmetičko–logičke jedinice (ALU)?

Pitanje 1.3. Koje su faze ciklusa instrukcije koje sprovodi kontrolna jedinica?

Pitanje 1.4. Šta je osnovna ideja cevovoda (pipelining) i šta mu je glavni cilj?

Pitanje 1.5. Koje tri vrste hazard-a mogu da se pojave u cevovodu?

Pitanje 1.6. Šta označava pojam Instruction-Level Parallelism (ILP)?

Pitanje 1.7. Kako predikcija skokova doprinosi smanjenju broja ciklusa po in-
strukciji (CPI)?

Pitanje 1.8. U čemu se razlikuju ILP i TLP pristupi paralelizmu?

Pitanje 1.9. Koja je osnovna razlika između CPU i GPU arhitekture u pogledu
paralelizma?

Pitanje 1.10. Koja je uloga keš memorije u hijerarhiji memorija?

Pitanje 1.11. Koja je razlika između politika upisa pisanje-prolazom (engl. write-
through) i pisanje-na-izbacivanje (engl. write-back)?

Pitanje 1.12. Šta je osnovna funkcija sistemske magistrale?

Pitanje 1.13. Koje su prednosti PCI Express (PCIe) u odnosu na klasičnu zajed-
ničku magistralu?

Pitanje 1.14. Šta je zadatak čipseta (PCH) u savremenim računarima?

Ele
ktr

on
ska

ver
zija

(20
25

)

1.6. Trendovi u savremenim arhitekturama 32

Pitanje 1.15. Koja je osnovna razlika između BIOS-a i UEFI firmware-a?

Pitanje 1.16. Gde se fizički nalazi UEFI kod i kako se ažurira?

Pitanje 1.17. Šta znači pojam Direct Memory Access (DMA) i čemu služi?

Pitanje 1.18. Koja je funkcija NVMe protokola u odnosu na starije SATA inter-
fejse?

Pitanje 1.19. Šta je osnovna ideja System-on-Chip (SoC) arhitekture?

Pitanje 1.20. Koja su tri osnovna parametra energetske potrošnje čipa (vršna
snaga, TDP, srednja snaga)?

Pitanje 1.21. Navedi dve tehnike upravljanja energijom korišćene u savremenim
procesorima.

Pitanje 1.22. Šta je tamni silicijum (dark silicon) i kako utiče na dizajn proce-
sora?

	Sadržaj
	Hardver savremenih računara
	Procesor (CPU)
	Memorijska hijerarhija
	Sistemska magistrala i komunikacija komponenti
	Ulazno–izlazni podsistem
	Integracija hardverskih podsistema
	Trendovi u savremenim arhitekturama

